Câu hỏi trang 24 Toán 11 Tập 1 Kết nối tri thức | Giải bài tập Toán lớp 11

344

Với giải Câu hỏi trang 24 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 3: Hàm số lượng giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 3: Hàm số lượng giác

Câu hỏi trang 24 Toán 11 Tập 1: Hàm số hằng f(x) = c (c là hằng số) có phải hàm số tuần hoàn không? Nếu hàm số tuần hoàn thì nó có chu kì không?

Lời giải:

Hàm số hằng f(x) = c (c là hằng số) có tập xác định D = ℝ.

Với T là số dương bất kì và với mọi x ∈ D, ta luôn có:

+) x + T ∈ D và x – T ∈ D;

+) f(x + T) = c = f(x) (vì f(x) là hàm số hằng nên với mọi x thì giá trị của hàm số đều có giá trị bằng c).

Vậy hàm số hằng f(x) = c (c là hằng số) là hàm số tuần hoàn với chu kì là một số dương bất kì.

Lý thuyết Hàm số chẵn, hàm số lẻ, hàm số tuần hoàn

a, Hàm số chẵn, hàm số lẻ

Cho hàm số y = f(x) có tập xác định là D.

+) Hàm số f(x) được gọi là hàm số chẵn nếu xDthì xDvà f(x)=f(x). Đồ thị của một hàm số chẵn nhận trục tung (Oy) làm trục đối xứng.

+) Hàm số f(x) được gọi là hàm số lẻ nếu xDthì xDvà f(x)=f(x). Đồ thị của một hàm số lẻ nhận gốc tọa độ làm tâm đối xứng.

b, Hàm số tuần hoàn

Hàm số y = f(x) có tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại số T 0 sao cho với mọi xDta có:

+) x+TDvà xTD

+) f(x+T)=f(x)

Số T dương nhỏ nhất thỏa mãn cách điều kiện trên (nêu có) được gọi là chu kì của hàm số tuần hoàn đó.

* Nhận xét:

Các hàm số y = sinx, y=cosx tuần hoàn chu kì 2π.

Các hàm số y = tanx, y=cotx tuần hoàn chu kì π.

Đánh giá

0

0 đánh giá