HĐ3 trang 24 Toán 11 Tập 1 Kết nối tri thức | Giải bài tập Toán lớp 11

842

Với giải HĐ3 trang 24 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 3: Hàm số lượng giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 3: Hàm số lượng giác

HĐ3 trang 24 Toán 11 Tập 1So sánh:

a) sin(x + 2π) và sin x;

b) cos(x + 2π) và cos x;

c) tan(x + π) và tan x;

d) cot(x + π) và cot x.

Lời giải:

a) Ta có: sin(x + 2π) = sin[π + (x + π)] = – sin(x + π) = – sin(π + x) = – (– sin x) = sin x.

Vậy sin(x + 2π) = sin x.

b) Ta có: cos(x + 2π) = cos[π + (x + π)] = – cos(x + π) = – (– cos x) = cos x.

Vậy cos(x + 2π) = cos x.

c) Ta có: tan(x + π) = tan(π + x) = tan x.

Vậy tan(x + π) = tan x.

d) Ta có: cot(x + π) = cot(π + x) = cot x.

Vậy cot(x + π) = cot x.

Lý thuyết Hàm số chẵn, hàm số lẻ, hàm số tuần hoàn

a, Hàm số chẵn, hàm số lẻ

Cho hàm số y = f(x) có tập xác định là D.

+) Hàm số f(x) được gọi là hàm số chẵn nếu xDthì xDvà f(x)=f(x). Đồ thị của một hàm số chẵn nhận trục tung (Oy) làm trục đối xứng.

+) Hàm số f(x) được gọi là hàm số lẻ nếu xDthì xDvà f(x)=f(x). Đồ thị của một hàm số lẻ nhận gốc tọa độ làm tâm đối xứng.

b, Hàm số tuần hoàn

Hàm số y = f(x) có tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại số T 0 sao cho với mọi xDta có:

+) x+TDvà xTD

+) f(x+T)=f(x)

Số T dương nhỏ nhất thỏa mãn cách điều kiện trên (nêu có) được gọi là chu kì của hàm số tuần hoàn đó.

* Nhận xét:

Các hàm số y = sinx, y=cosx tuần hoàn chu kì 2π.

Các hàm số y = tanx, y=cotx tuần hoàn chu kì π.

Đánh giá

0

0 đánh giá