20 Bài tập Hàm số lượng giác và đồ thị (sách mới) có đáp án – Toán 11

4.5 K

Tailieumoi.vn xin giới thiệu Bài tập Toán lớp 11 Hàm số lượng giác và đồ thị, được sưu tầm và biên soạn theo chương trình học của 3 bộ sách mới. Bài viết gồm 20 bài tập với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài tập Toán 11. Ngoài ra, bài viết còn có phần tóm tắt nội dung chính lý thuyết Hàm số lượng giác và đồ thị. Mời các bạn đón xem:

Bài tập Toán 11 Hàm số lượng giác và đồ thị

A. Bài tập Hàm số lượng giác và đồ thị

Bài 1. Xét tính chẵn lẻ của các hàm số sau:

a) fx=x2sinx+tanx.

b) f(x) = |x|.sin x.

Hướng dẫn giải

Lý thuyết Toán 11 Chân trời sáng tạo Bài 4: Hàm số lượng giác và đồ thị

⇔ sin 2x ≠ 0 ⇔ 2x ≠ kπ ⇔ xkπ2, k ∈ ℤ.

Vậy hàm số f(x) xác định trên Lý thuyết Toán 11 Chân trời sáng tạo Bài 4: Hàm số lượng giác và đồ thị là tập đối xứng.

Ta có: fx=x2sinx+tanx=x2sinx+tanx=fx

Vậy hàm số fx=x2sinx+tanx là hàm số lẻ.

b) Hàm số f(x) xác định trên D = ℝ là tập đối xứng

Ta có: f(−x) = |−x|.sin (−x) = |x|.sin x = −f(x).

Vậy hàm số f(x) = |x|.sin x là hàm số lẻ.

Bài 2. Tìm tập xác định của hàm số: y=1+cosx1cosx.

Hướng dẫn giải

Hàm số y=1+cosx1cosx xác định ⇔Lý thuyết Toán 11 Chân trời sáng tạo Bài 4: Hàm số lượng giác và đồ thị

Vì 1cosx1,  x nên Lý thuyết Toán 11 Chân trời sáng tạo Bài 4: Hàm số lượng giác và đồ thị

⇒ 1+cosx1cosx0,   1cosx0.

Do đó y xác định khi và chỉ khi 1cosx0 ⇔ cos x ≠ 1 ⇔ x ≠ k2π.

Vậy tập xác định của hàm số là D = ℝ \ {k2π, k ∈ ℤ}.

Bài 3. Dựa vào đồ thị của hàm số y = sin x, vẽ đồ thị của hàm số y = |sin x|.

Hướng dẫn giải

Ta biết đồ thị hàm số y = sin x có dạng như sau:

Lý thuyết Toán 11 Chân trời sáng tạo Bài 4: Hàm số lượng giác và đồ thị

Với hàm số y = |sin x| ta có:

Lý thuyết Toán 11 Chân trời sáng tạo Bài 4: Hàm số lượng giác và đồ thị

Từ dồ thị hàm số y = sin x ta có thể suy ra đồ thị hàm số y = |sin x| bằng cách:

- Giữ nguyên phần đồ thị nằm phía trên trục Ox (sin x > 0).

- Lấy đối xứng phần đồ thị nằm phía dưới Ox qua Ox.

Như vậy, ta được đồ thị hàm số y = |sin x| có dạng như sau (nét liền).

Lý thuyết Toán 11 Chân trời sáng tạo Bài 4: Hàm số lượng giác và đồ thị

Bài 4. Xác định tham số m để:

a) Hàm số f(x) = 5m.sin4x + cos2x là hàm số chẵn.

b) Hàm số g(x) = (m – 1).tanx.cotx là hàm số lẻ.

Hướng dẫn giải

a) Hàm số f(x) có tập xác định là D = ℝ.

Ta có ∀x ∈ ℝ thì –x ∈ ℝ.

Để hàm số f(x) là hàm số chẵn thì f(–x) = f(x), ∀x ∈ ℝ.

⇔ 5m.sin(–4x) + cos(–2x) = 5m.sin4x + cos2x, ∀x ∈ ℝ.

⇔ –5m.sin4x + cos2x = 5m.sin4x + cos2x, ∀x ∈ ℝ.

⇔ 10m.sin4x = 0, ∀x ∈ ℝ.

⇔ m = 0.

Vậy m = 0 thỏa mãn yêu cầu bài toán.

b) Hàm số g(x) có tập xác định là Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị.

Ta có ∀x ∈ D thì –x ∈ D.

Để hàm số g(x) là hàm số lẻ thì f(–x) = –f(x), ∀x ∈ D.

⇔ (m – 1).tan(–x).cot(–x) = –(m – 1).tanx.cotx, ∀x ∈ D.

⇔ (m – 1).tanx.cotx = –(m – 1).tanx.cotx, ∀x ∈ D.

⇔ 2(m – 1).tanx.cotx = 0, ∀x ∈ D.

⇔ m – 1 = 0.

⇔ m = 1.

Vậy m = 1 thỏa mãn yêu cầu bài toán.

Bài 5. Chứng minh các hàm số sau là hàm số tuần hoàn:

a) f(x) = tan2x, với T=3π2;

b) Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị, với T = 3π.

Hướng dẫn giải

a) Hàm số f(x) có tập xác định là Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị.

⦁ Ta có ∀x ∈ D thì x+T=x+3π2D và xT=x3π2D.

⦁ Lại có Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị

Vậy hàm số f(x) = tan2x là hàm số tuần hoàn.

b) Hàm số g(x) có tập xác định là E = ℝ \ {kπ | k ∈ ℤ}.

⦁ Ta có ∀x ∈ E thì x + T = x + 3π ∈ E và x – T = x – 3π ∈ E.

Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị

Bài 6. Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ t của năm 2017 (có 365 ngày) được cho bởi một hàm số Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị, với t ∈ ℤ và 0 < t ≤ 365. Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng mặt trời nhất?

Hướng dẫn giải

Ta có tập giá trị của hàm số y = sinx là [–1; 1].

Tức là, sinx ≤ 1.

Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị

⇔ y ≤ 14 (*)

Yêu cầu bài toán ⇔ Tìm t để y = 14, với 0 < t ≤ 365.

Ta có dấu “=” của (*) xảy ra khi và chỉ khi Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị (**)

Quan sát hình vẽ, ta thấy đồ thị hàm số y = sinx cắt đường thẳng y = 1 tại x=π2+k2π, với k ∈ ℤ.

Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị

Do đó (**) tương đương với: Lý thuyết Toán 11 Cánh diều Bài 3: Hàm số lượng giác và đồ thị.

⇔ t – 60 = 89 + 356k (k ∈ ℤ).

⇔ t = 149 + 356k (k ∈ ℤ).

Vì 0 < t ≤ 365 nên 0 < 149 + 356k ≤ 365.

⇔ –149 < 356k ≤ 216.

149356<k5489.

Mà k ∈ ℤ nên k = 0.

Với k = 0, ta có: t = 149.

Vậy ngày 29 tháng 5 năm 2017 là ngày thành phố A có nhiều giờ có ánh sáng mặt trời nhất.

Bài 7. Tìm tập xác định của các hàm số sau:

a) y=1+sinxcosx;

b) y=1+cosx1cosx.

Hướng dẫn giải

a) Biểu thức 1+sinxcosx có nghĩa khi cos x ≠ 0, tức là x ≠ π2+kπ(k ∈ ℤ).

Vậy tập xác định của hàm số y=1+sinxcosx là D = R\Lý thuyết Toán 11 Kết nối tri thức Bài 3: Hàm số lượng giác.

b) Biểu thức 1+cosx1cosx có nghĩa khi Lý thuyết Toán 11 Kết nối tri thức Bài 3: Hàm số lượng giác (1)

Mặt khác, vì –1 ≤ cosx ≤ 1 ∀x ∈ ℝ nên 1 + cosx ≥ 0 và 1 – cosx ≥ 0

⇒ 1+cosx1cosx0 khi 1 – cosx ≠ 0

Do đó (1) ⇔ 1 – cosx ≠ 0 ⇔ cosx ≠ 1 ⇔ x ≠ k2ℼ (k ∈ ℤ).

Vậy tập xác định của hàm số y=1+cosx1cosx là D = ℝ \ {k2ℼ | k ∈ ℤ}.

Bài 8. Xét tính chẵn, lẻ của các hàm số sau:

a) f(x) = sinx cosx;

b) g(x) = sin2x + cos2x.

Hướng dẫn giải

a) Tập xác định của hàm số f(x) là D = ℝ.

Do đó, nếu x ∈ D thì –x ∈ D.

Ta có f(–x) = sin(–x) cos(–x) = –sinx . cosx = – f(x).

Vậy hàm số f(x) = sinx cosx là hàm số lẻ.

b) Tập xác định của hàm số g(x) là D = ℝ.

Do đó, nếu x ∈ D thì –x ∈ D.

Ta có g(–x) = sin2(–x) + cos2(–x) = [–sinx]2 + cos(–2x) = sin2x + cos2x = f(x).

Vậy hàm số g(x) = sin2x + cos2x là hàm số chẵn.

Bài 9. Tìm tập giá trị của hàm số sau:

a) y = 1+ sinx;

b) y = 3cosLý thuyết Toán 11 Kết nối tri thức Bài 3: Hàm số lượng giác - 1.

Hướng dẫn giải

a) Điều kiện xác định của hàm số là sin x ≥ 0;

Vì –1 ≤ sin x ≤ 1 nên kết hợp với điều kiện xác định, ta có 0 ≤ sin x ≤ 1

Suy ra 0sinx1 ⇒ 1+0 1 + sinx  1 + 1 ⇒ 11+sinx2

⇒ 1 ≤ y ≤ 2

Vậy tập giá trị của hàm số y=1+sinx là [1; 2].

b) Ta có 1cosLý thuyết Toán 11 Kết nối tri thức Bài 3: Hàm số lượng giác1, xR ⇔ -33cos Lý thuyết Toán 11 Kết nối tri thức Bài 3: Hàm số lượng giác3, xR

⇔ -43cosLý thuyết Toán 11 Kết nối tri thức Bài 3: Hàm số lượng giác - 12, xR

⇔ –4 ≤ y ≤ 2, ∀x ∈ ℝ.

Vậy tập giá trị của hàm số y = 3cosLý thuyết Toán 11 Kết nối tri thức Bài 3: Hàm số lượng giác - 1 là [–4; 2].

Bài 10.  Hàm số y = 3sinx – cosx có giá trị nhỏ nhất là:

Hướng dẫn giải

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 11.  Cho hàm số y = cosx-1cosx+2. Mệnh đề nào trong số các mệnh đề sau đây là sai?

Hướng dẫn giải

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 12. Hàm số nào sau đây có giá trị lớn nhất bằng 2?

Hướng dẫn giải

Các hàm số y= tanx- cotx và y= 2tanx không có giá trị lớn nhất, hàm số y= sin(2x-π4) có giá trị lớn nhất là 1

Cũng có thể nhận ngay ra đáp án C vì :

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

B. Lý thuyết Hàm số lượng giác và đồ thị

1. Hàm số lượng giác

- Hàm số sin là quy tắc đặt tương ứng mỗi số thực x với số thực sin x, kí hiệu y = sin x.

- Hàm số côsin là quy tắc đặt tương ứng mỗi số thực x với số thực cos x, kí hiệu          y = cos x.

- Hàm số tang là hàm số được xác định bởi công thức

y=sinxcosx với xπ2+kπ  (k), kí hiệu y = tan x.

- Hàm số côtang là hàm số được xác định bởi công thức

y=cosxsinx với x ≠ kπ (k ∈ ℤ), kí hiệu y = cot x.

Chú ý:

• Tập xác định của hàm số y = sin x và y = cos x là ℝ.

Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

2. Hàm số chẵn, hàm số lẻ, hàm số tuần hoàn

2.1. Hàm số chẵn, hàm số lẻ

- Hàm số y = f(x) với tập xác định D được gọi là hàm số chẵn nếu với mọi x ∈ D ta có    – x ∈ D và f(−x) = f(x).

- Hàm số y = f(x) với tập xác định D được gọi là hàm số lẻ nếu với mọi x ∈ D ta có              – x ∈ D và f(−x) = −f(x).

Chú ý:

• Đồ thị của hàm số chẵn nhận trục tung làm trục đối xứng.

• Đồ thị của hàm số lẻ nhận gốc tọa độ làm tâm đối xứng.

Ví dụ: Xét tính chẵn lẻ của hàm số y = f(x) = sin(2x + 1).

Ta có hàm số y = f(x) = sin(2x + 1) có tập xác định là ℝ. Với mọi x ∈ ℝ ta có –x ∈ ℝ và f(–x) = sin[2(–x) + 1] = sin(–2x + 1) = –sin(2x – 1).

Nhận thấy f(–x) ≠ f(x) và f(–x) ≠ –f(x).

Vậy hàm số y = sin(2x + 1) không phải hàm số chẵn, không phải hàm số lẻ.

2.2. Hàm số tuần hoàn

- Hàm số y = f(x) với tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại một số T khác 0 sao cho với mọi x ∈ D ta có x ± T ∈ D và f(x + T) = f(x).

- Số T dương nhỏ nhất thỏa mãn các điều kiện trên (nếu có) được gọi là chu kì của hàm số tuần hoàn y = f(x).

Chú ý:

• Đồ thị của hàm số tuần hoàn chu kì T được lặp lại trên từng đoạn giá trị của x có độ dài T.

• Các hàm số y = sin x và y = cos x là các hàm số tuần hoàn với chu kì 2π.

• Các hàm số y = tan x và y = cot x là các hàm số tuần hoàn với chu kì π.

3. Đồ thị của các hàm số lượng giác

3.1. Hàm số y = sin x

Hàm số y = sin x có tập xác định là ℝ, tập giá trị là [−1; 1] và có các tính chất sau:

- Hàm số tuần hoàn với chu kì 2π.

- Hàm số lẻ, có đồ thị đối xứng qua gốc tọa độ O.

- Hàm số đồng biến trên các khoảng (π2+2kπ;  π2+2kπ  )(k) và nghịch biến trên các khoảng (π2+2kπ;  3π2+2kπ  )(k.)

Đồ thị của hàm số y = sin x trên ℝ như sau:

Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Chú ý:

• Vì y = sin x là hàm số lẻ nên để vẽ đồ thị của nó trên đoạn [−π; π], ta có thể vẽ trên đoạn [0; π], sau đó lấy đối xứng qua gốc tọa độ.

3.2. Hàm số y = cos x

Hàm số y = cos x có tập xác định là ℝ, tập giá trị là [−1; 1] và có các tính chất sau:

- Hàm số tuần hoàn với chu kì 2π.

- Hàm số chẵn, có đồ thị đối xứng qua trục Oy.

- Hàm số đồng biến trên các khoảng (π+2kπ;  2kπ  )(k) và nghịch biến trên các khoảng (2kπ;  π+2kπ  )(k.)

Đồ thị của hàm số y = cos x trên ℝ như sau:

Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Chú ý:

• Vì y = cos x là hàm số chẵn nên để vẽ đồ thị của nó trên đoạn [−π; π], ta có thể vẽ trên đoạn [0; π], sau đó lấy đối xứng qua trục tung.

3.3. Hàm số y = tan x

Hàm số y = tan x có tập xác định là Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo và có các tính chất sau:

- Hàm số tuần hoàn với chu kì π.

- Hàm số lẻn, có đồ thị đối xứng qua gốc tọa độ O.

- Hàm số đồng biến trên các khoảng (π2+kπ;  π2+kπ  k.)

Đồ thị của hàm số y = tan x trên Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo như sau:

Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Chú ý:

• Vì y = tan x là hàm số lẻ nên để vẽ đồ thị của nó trên khoảng (π2;π2,) ta có thể vẽ trên nửa khoảng [0;π2,) sau đó lấy đối xứng qua gốc tọa độ.

3.4. Hàm số y = cot x

Hàm số y = cot x có tập xác định là Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo và có các tính chất sau:

- Hàm số tuần hoàn với chu kì π.

- Hàm số lẻn, có đồ thị đối xứng qua gốc tọa độ O.

- Hàm số nghịch biến trên các khoảng (kπ;  π+kπ  )(k.)

Đồ thị của hàm số y = cot x trên Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo như sau:

Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Video bài giảng Toán 11 Bài 3: Hàm số lượng giác - Kết nối tri thức

Đánh giá

0

0 đánh giá