Thực hành 2 trang 36 Toán 11 Tập 1 Chân trời sáng tạo | Giải bài tập Toán lớp 11

396

Với giải Thực hành 2 trang 36 Toán 11 Tập 1 Chân trời sáng tạo chi tiết trong Bài 5: Phương trình lượng giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 5: Phương trình lượng giác

Thực hành 2 trang 36 Toán 11 Tập 1Giải các phương trình sau:

a) sinx = 32;

b) sin(x + 30°) = sin(x + 60°).

Lời giải:

a) sinx = 32

Vì sinπ3 = 32 nên phương trình sinx = 32= sinπ3 có các nghiệm là:

x=π3+k2π và x=2π3+k2π, k ∈ ℤ.

Vậy tập nghiệm của phương trình đã cho là: S = π3+k2π,2π3+k2π,k.

b) sin(x + 30°) = sin(x + 60°)

⇔ x + 30° = x + 60° + k360° hoặc x + 30° = 360° – x – 60° + k360° (k ∈ ℤ)

⇔ 30° = 60° + k360° (vô lí) hoặc x = 150° + k180° (k ∈ ℤ).

Vậy tập nghiệm của phương trình đã cho là: S = {150° + k180°, k ∈ ℤ}.

Lý thuyết Phương trình sinx=m

Phương trình sinx = m ,

  • Nếu |m|1 thì phương trình vô nghiệm.
  • Nếu |m|1 thì phương trình có nghiệm:

Khi đó, tồn tại duy nhất α[π2;π2] thoả mãn sinα=m,

sinx=msinx=sinα [x=α+k2πx=πα+k2π(kZ)

* Chú ý:

a, Nếu số đo của góc αđược cho bằng đơn vị độ thì sinx=sinαo[x=αo+k360ox=180oαo+k360o(kZ)

b, Một số trường hợp đặc biệt

sinx=0x=kπ,kZ.sinx=1x=π2+k2π,kZ.sinx=1x=π2+k2π,kZ.

Đánh giá

0

0 đánh giá