Tìm chữ số tận cùng của kết quả mỗi phép tính sau 54^10

528

Với giải Bài 48 trang 18 SBT Toán lớp 6 Cánh diều chi tiết trong Bài 5: Phép tính lũy thừa với số mũ tự nhiên giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 6. Mời các bạn đón xem:

Giải SBT Toán lớp 6 Bài 5: Phép tính lũy thừa với số mũ tự nhiên

Bài 48 trang 18 sách bài tập Toán lớp 6 Tập 1: Tìm chữ số tận cùng của kết quả mỗi phép tính sau:

a) 5410;

b) 4915;

c) 1120 + 11921 + 2 00022;

d) 13833 – 2 02014.

Lời giải:

a) Ta có: 5410 = (542)5 = (2 916)5

Tích của 5 chữ số 6 có chữ số tận cùng là 6 nên (2 916)5 có chữ số tận cùng là 6.

Vậy 5410 có chữ số tận cùng là 6.

b) 4915 = 4914.49 = (492)7.49 = (2 401)7.49 

Vì (2 401)7 có chữ số tận cùng là 1 nên (2 401)7.49 có chữ số tận cùng là 9.

Vậy chữ số tận cùng của số 4915 là 9.

c) Ta có 1120 có chữ số tận cùng là 1;

11921 có chữ số tận cùng là 9;

2 00022 có chữ số tận cùng là 0.

Khi đó 1120 + 11921 + 2 00022 có chữ số tận cùng là chữ số tận cùng của tổng 1 + 9 + 0 =10. 

Vậy 1120 + 11921 + 2 00022 có chữ số tận cùng là 0.

d) 13833 = 13832.138 = (1384)8.138.

Vì (1384)8 có chữ số tận cùng là 6 nên (1384)8.138 có tận cùng là 8.

Mà 2 02014 có chữ số tận cùng là 0.

Do đó 13833 – 2 02014 có chữ số tận cùng là 8.

Vậy chữ số tận cùng của 13833 – 2 02014 là 8.

Từ khóa :
toán 6
Đánh giá

0

0 đánh giá