Giải Toán 10 trang 90 Tập 2 Cánh diều

366

Với Giải Toán lớp 10 trang 90 Tập 2 Cánh diều tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải Toán 10 trang 90 Tập 2 Cánh diều

Hoạt động 4 trang 90 Toán lớp 10 Tập 2: Cho điểm M0(x0; y0) nằm trên đường tròn (C) tâm I(a; b) bán kính R.

Gọi ∆ là tiếp tuyến tại điểm M0(x0; y0) thuộc đường tròn (Hình 44).

Cho điểm M0(x0; y0) nằm trên đường tròn (C) tâm I(a; b) bán kính R

a) Chứng tỏ rằng IM0 là vectơ pháp tuyến của đường thẳng ∆.

b) Tính tọa độ của IM0.

c) Lập phương trình tổng quát của đường thẳng ∆.

Lời giải:

a) Vì đường thẳng ∆ là tiếp tuyến của đường tròn (C) có tâm I tại điểm M0 nên IM0 vuông góc với ∆ tại M0 (tiếp tuyến của đường tròn vuông góc với bán kính đi qua tiếp điểm).

Do đó, vectơ IM0 có giá là đường thẳng IM0 vuông góc với đường thẳng ∆.

Vậy vectơ IM0 là vectơ pháp tuyến của đường thẳng ∆.

b) Ta có: IM0=x0a;y0b.

c) Đường thẳng ∆ đi qua điểm M0(x0; y0) và nhận IM0 làm vectơ pháp tuyến.

Do đó, phương trình tổng quát của đường thẳng ∆ là(x0 – a)(x – x0) + (y0 – b)(y – y0) = 0.

Luyện tập 4 trang 90 Toán lớp 10 Tập 2: Lập phương trình tiếp tuyến tại điểm M0(– 1; – 4) thuộc đường tròn (x – 3)2 + (y + 7)2 = 25.

Lời giải:

Đường tròn có tâm I(3; – 7).

Phương trình tiếp tuyến tại điểm M0(– 1; – 4) thuộc đường tròn (x – 3)2 + (y + 7)2 = 25 là

(– 1 – 3)(x + 1) + (– 4 + 7)(y + 4) = 0

 – 4x – 4 + 3y + 12 = 0  4x – 3y – 8 = 0.

Xem thêm các bài giải Toán lớp 10 Cánh diều hay, chi tiết khác:

Giải Toán 10 trang 87 Tập 2

Giải Toán 10 trang 88 Tập 2

Giải Toán 10 trang 89 Tập 2

Giải Toán 10 trang 91 Tập 2

Giải Toán 10 trang 92 Tập 2

Đánh giá

0

0 đánh giá