Với Giải Toán lớp 10 trang 89 Tập 2 Cánh diều tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Giải Toán 10 trang 89 Tập 2 Cánh diều
Luyện tập 2 trang 89 Toán lớp 10 Tập 2: Tìm k sao cho phương trình: x2 + y2 + 2kx + 4y + 6k – 1 = 0 là phương trình đường tròn.
Lời giải:
Ta có: x2 + y2 + 2kx + 4y + 6k – 1 = 0
⇔ (x2 + 2kx + k2) + (y2 + 4y + 4) – k2 + 6k – 1 – 4 = 0
⇔ (x + k)2 + (y + 2)2 = k2 – 6k + 5
Do đó, phương trình trên là phương trình đường tròn khi và chỉ khi k2 – 6k + 5 > 0.
Giải phương trình k2 – 6k + 5 > 0.
Tam thức bậc hai k2 – 6k + 5 có ∆' = (– 3)2 – 1 . 5 = 4 > 0 nên tam thức có hai nghiệm phân biệt k1 = 1, k2 = 5. Do hệ số a > 0 nên tam thức cùng dấu với a khi k ∈ (– ; 1) ∪ (5; + ). Vậy k2 – 6k + 5 > 0 khi k ∈ (– ; 1) ∪ (5; + ).
Vậy phương trình đã cho là phương trình đường tròn khi k ∈ (– ; 1) ∪ (5; + ).
Luyện tập 3 trang 89 Toán lớp 10 Tập 2: Lập phương trình đường tròn đi qua ba điểm A(1; 2), B(5; 2), C(1; – 3).
Lời giải:
Giả sử tâm của đường tròn là điểm I(a; b).
Ta có IA = IB = IC ⇔ IA2 = IB2 = IC2.
Vì IA2 = IB2, IB2 = IC2 nên
Đường tròn tâm I bán kính R = IA = .
Phương trình đường tròn là .
Vậy phương trình đường tròn là .
Xem thêm các bài giải Toán lớp 10 Cánh diều hay, chi tiết khác: