Với Giải Toán lớp 10 trang 69 Tập 2 Cánh diều tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Giải Toán 10 trang 69 Tập 2 Cánh diều
Hoạt động 2 trang 69 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho hai điểm A(xA; yA) và B(xB; yB). Gọi M(xM; yM) là trung điểm của đoạn thẳng AB (minh họa ở Hình 19).
a) Biểu diễn vectơ theo hai vectơ và .
b) Tìm tọa độ của M theo tọa độ của A và B.
Lời giải:
a) Vì M là trung điểm của AB nên với điểm O, ta có hay .
b) Tọa độ của vectơ chính là tọa độ của điểm A(xA; yA) nên .
Tọa độ của vectơ chính là tọa độ của điểm B(xB; yB) nên .
Ta có: ; .
Do đó: .
Tọa độ của vectơ chính là tọa độ của điểm M.
Vậy tọa độ của điểm M là M.
Luyện tập 3 trang 69 Toán lớp 10 Tập 2: Cho hai điểm A(2; 4) và M(5; 7).Tìm tọa độ điểm B sao cho M là trung điểm đoạn thẳng AB.
Lời giải:
Gọi tọa độ điểm B(xB; yB).
Vì M là trung điểm của AB nên .
Vậy tọa độ điểm B là B(8; 10).
Hoạt động 3 trang 69 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trọng tâm G (minh họa ở Hình 20).
a) Biểu diễn vectơ theo ba vectơ và .
b) Tìm tọa độ của G theo tọa độ của A, B, C.
Lời giải:
a) Vì G là trọng tâm của tam giác ABC nên với điểm O ta có hay .
b) Tọa độ của vectơ chính là tọa độ của điểm A(xA; yA) nên .
Tọa độ của vectơ chính là tọa độ của điểm B(xB; yB) nên .
Tọa độ của vectơ chính là tọa độ của điểm C(xC; yC) nên .
Ta có:; ,
Do đó: .
Tọa độ của vectơ chính là tọa độ của điểm G.
Vậy tọa độ của điểm G là G .
Luyện tập 4 trang 69 Toán lớp 10 Tập 2: Cho ba điểm A(– 1; 1); B(1; 5); G(1; 2).
a) Chứng minh ba điểm A, B, G không thẳng hàng.
b) Tìm tọa độ điểm C sao cho G là trọng tâm của tam giác ABC.
Lời giải:
a) Ta có: , .
Vì nên .
Vậy ba điểm A, B, G không thẳng hàng.
b) Gọi tọa độ điểm C(xC; yC).
Vậy tọa độ điểm C là C(3; 0).
Xem thêm các bài giải Toán lớp 10 Cánh diều hay, chi tiết khác: