Bài 2 trang 103 Toán 7 Tập 2 | Cánh diều Giải toán lớp 7

2.2 K

Với giải Bài 2 trang 103 Toán lớp 7 Cánh diều chi tiết trong Bài 9: Đường trung trực của một đoạn thẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:

Giải bài tập Toán lớp 7 Bài 9: Đường trung trực của một đoạn thẳng

Bài 2 trang 103 Toán 7 Tập 2: Trong Hình 95, đường thẳng a là đường trung trực của cả hai đoạn thẳng AB và CD.

Giải Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng (ảnh 1) 

Chứng minh:

a) AB // CD;

b) MNC = MND;

c) AMD^=BMC^;

d) AD = BC, A^=B^;

e) ADC^=BCD^.

Lời giải:

GT

a là đường trung trực của đoạn thẳng AB và CD,

M là trung điểm của AB,

N là trung điểm của CD

KL

a) AB // CD;

b) MNC = MND;

c) AMD^=BMC^;

d) AD = BC, A^=B^;

e) ADC^=BCD^.

Chứng minh (Hình 95):

a) Vì a là đường trung trực của cả hai đoạn thẳng AB và CD (giả thiết)

Nên a  AB và a  CD.

Do đó AB // CD (hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba)

Vậy AB // CD.

b) Ta có: a  CD tại N nên MNC vuông tại N và MND vuông tại N.

Xét MNC (vuông tại N) và MND (vuông tại N) có:

MN là cạnh chung

NC = ND (N là trung điểm của CD).

Do đó MNC = MND (hai cạnh góc vuông).

c) Vì MNC = MND (chứng minh câu b)

Nên MCN^=MDN^ (hai góc tương ứng). (1)

Do AM // DN nên AMD^=MDN^ (hai góc so le trong). (2)

Do BM // CN nên BMC^=MCN^ (hai góc so le trong). (3)

Từ (1), (2) và (3) suy ra AMD^=BMC^.

Vậy AMD^=BMC^.

d)Vì MNC = MND (chứng minh câu b)

Nên MC = MD (hai cạnh tương ứng).

Xét AMD và BMC có:

AM = BM (M là trung điểm của AB),

AMD^=BMC^ (chứng minh trên),

MD = MC (chứng minh trên)

Do đó AMD = BMC (c.g.c)

Suy ra AD = BC (hai cạnh tương ứng) và MAD^=MBC^ (hai góc tương ứng).

Vậy AD = BC và A^=B^.

e) Vì AMD = BMC (chứng minh câu d)

Nên ADM^=BCM^ (hai góc tương ứng).

Mà MDN^=MCN^ (chứng minh câu c)

Do đó ADM^+MDN^=BCM^+MCN^ 

Hay ADC^=BCD^.

Vậy ADC^=BCD^

Đánh giá

0

0 đánh giá