Cho tam giác ABC cân tại A có

636

Với giải Câu 6 trang 126 Vở bài tập Toán lớp 7 Cánh diều chi tiết trong Bài tập cuối chương 7 trang 123, 124, 125, 126, 127, 128, 129, 130, 131 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong Vở bài tập Toán 7. Mời các bạn đón xem:

Giải VBT Toán lớp 7 Bài tập cuối chương 7 trang 123, 124, 125, 126, 127, 128, 129, 130, 131

Câu 6 trang 126 vở bài tập Toán lớp 7 Tập 2: Cho tam giác ABC cân tại A có ABC^ = 70o. Hai đường thẳng BD và CE cắt nhau tại H.

a) Tính số đo các góc còn lại của tam giác ABC;

b) Chứng minh BD = CE;

c) Chứng minh tia AH là tia phân giác của góc BAC.

Lời giải:

Cho tam giác ABC cân tại A có góc ABC = 70 độ, Hai đường thẳng BD và CE cắt nhau tại H

Vì tam giác ABC cân tại A nên ACB^ = ABC^

Mà ABC^ = 70o nên ACB^ = 70o

Do BAC^ + ABC^ + ACB^ = 180o (tổng ba góc của một tam giác)

Nên BAC^ = 180o – ( ABC^ + ACB^ ) = 180o – (70o + 70o) = 40o.

b) Xét hai tam giác vuông ABD và ACE, ta có

AB = AC (hai cạnh bên của tam giác cân); A^ là góc chung

Suy ra ∆ABD = ∆ACE (cạnh huyền – góc nhọn)

Do đó BD = CE (hai cạnh tương ứng)

c) Ta có ∆ABD = ∆ACE nên AD = AE (hai cạnh tương ứng)

Xét hai tam giác vuông ADH và AEH, ta có:

AH là cạnh chung; AD = AE

Suy ra ∆ADH = ∆AEH (cạnh huyền – cạnh góc vuông)

Do HAD^ = HAE^ (hai góc tương ứng)

Vậy AH là tia phân giác của góc BAC.

Đánh giá

0

0 đánh giá