Với giải Bài 6.19 trang 24 SGK Toán 10 Kết nối tri thức chi tiết trong Bài 17: Dấu của tam thức bậc hai giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SGK Toán 10. Mời các bạn đón xem:
Giải bài tập Toán lớp 10 Bài 17: Dấu của tam thức bậc hai
Bài 6.19 trang 24 Toán 10 Tập 2: Xét đường tròn đường kính AB = 4 và một điểm M di chuyển trên đoạn AB, đặt AM = x (H.6.19). Xét hai đường tròn đường kính AM và MB. Kí hiệu S(x) diện tích phần hình phẳng nằm trong hình tròn lớn và nằm ngoài hai hình tròn nhỏ. Xác định các giá trị của x để diện tích S(x) không vượt quá một nửa tổng diện tích hai hình tròn nhỏ.
Lời giải:
Do M di chuyển trên đoạn AB và AM = x nên x ≥ 0 (xảy ra trường hợp bằng 0 khi M trùng A), lại có AM ≤ AB (dấu bằng xảy ra khi M trùng B) nên x ≤ 4, vậy điều kiện của x là 0 ≤ x ≤ 4.
Gọi S, S1, S2 lần lượt là diện tích hình tròn đường kính AB, AM và MB.
Đường tròn lớn có đường kính AB = 4 nên bán kính của hình tròn này là R = 2.
Diện tích hình tròn đường kính AB là S = πR2 = π . 22 = 4π.
Đường tròn đường kính AM = x có bán kính là r1 = .
Diện tích hình tròn đường kính AM là S1 = πr12 = .
Ta có: AM + MB = AB (do M nằm trên đoạn AB) ⇒ MB = AB – AM = 4 – x.
Đường tròn đường kính MB có bán kính là r2 = .
Diện tích hình tròn đường kính MB là S2 = πr22 = .
Tổng diện tích hai hình tròn đường kính AM và MB là:
S12= S1 + S2 = = .
Diện tích phần hình phẳng nằm trong hình tròn lớn (hình tròn đường kính AB) và nằm ngoài hai hình tròn nhỏ (hình tròn đường kính AM và MB) là
S(x) = S – S12 = .
Do diện tích S(x) không vượt quá một nửa tổng diện tích hai hình tròn nhỏ hay diện tích S(x) nhỏ hơn hoặc bằng nửa tổng diện tích hai hình tròn nhỏ hay S(x) ≤ .
Khi đó ta có:
⇔ – 2x2 + 8x ≤ x2 – 4x + 8
⇔ 3x2 – 12x + 8 ≥ 0
Xét tam thức f(x) = 3x2 – 12x + 8 có ∆' = (– 6)2 – 3 . 8 = 12 > 0 nên f(x) có hai nghiệm x1 = và x2 = .
Mà hệ số af = 3 > 0 nên ta có bảng xét dấu f(x):
x |
– ∞ + ∞ |
f(x) |
+ 0 – 0 + |
Từ đó suy ra f(x) ≥ 0 với mọi .
Kết hợp với điều kiện 0 ≤ x ≤ 4.
Vậy .
Xem thêm lời giải sách giáo khoa Toán 10 Kết nối tri thức hay, chi tiết khác:
Hoạt động 1 trang 19 Toán 10 Tập 2: Hãy chỉ ra một vài đặc điểm chung của các biểu thức dưới đây:...
Luyện tập 1 trang 19 Toán 10 Tập 2: Hãy cho biết biểu thức nào sau đây là tam thức bậc hai...
Hoạt động 2 trang 19 Toán 10 Tập 2: Cho hàm số bậc hai y = f(x) = x2 – 4x + 3...
Hoạt động 3 trang 20 Toán 10 Tập 2: Cho đồ thị hàm số y = g(x) = – 2x^2 + x + 3 như Hình 6.18...
Luyện tập 2 trang 22 Toán 10 Tập 2: Xét dấu các tam thức bậc hai sau:...
Luyện tập 3 trang 23 Toán 10 Tập 2: Giải các bất phương trình bậc hai sau:...
Bài 6.15 trang 24 Toán 10 Tập 2: Xét dấu các tam thức bậc hai sau:...
Bài 6.16 trang 24 Toán 10 Tập 2: Giải các bất phương trình bậc hai:...
Xem thêm các bài giải SGK Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài 17: Dấu của tam thức bậc hai