Bài 6.16 trang 24 Toán 10 Tập 2 | Kết nối tri thức Giải Toán lớp 10

4.5 K

Với giải Bài 6.16 trang 24 SGK Toán 10 Kết nối tri thức chi tiết trong Bài 17: Dấu của tam thức bậc hai giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SGK Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài 17: Dấu của tam thức bậc hai

Bài 6.16 trang 24 Toán 10 Tập 2: Giải các bất phương trình bậc hai:

a) x2 – 1 ≥ 0;

b) x2 – 2x – 1 < 0;

c) – 3x2 + 12x + 1 ≤ 0;

d) 5x2 + x + 1 ≥ 0.

Lời giải:

a) Tam thức f(x) = x2 – 1 có ∆ = 02 – 4 . 1 . (– 1) = 4 > 0 nên f(x) có hai nghiệm x1 = – 1 và x2 = 1.

Vì hệ số a = 1 > 0 nên ta có bảng xét dấu f(x):

x

– ∞                  – 1                      1                     + ∞

f(x)

             +           0           –          0            +

 

Vậy tập nghiệm của bất phương trình là S = (– ∞; – 1] ∪ [1; + ∞).

b) Tam thức f(x) = x2 – 2x – 1 có ∆' = (– 1)2 – 1 . (– 1) = 2 > 0 nên f(x) có hai nghiệm x1 = 1 2 và x2 = 1 + 2.

Vì hệ số a = 1 > 0 nên ta có bảng xét dấu f(x):

x

– ∞                1 2                   1 + 2                     + ∞

f(x)

             +            0             –            0                +

Vậy tập nghiệm của bất phương trình là S = 12;1+2.

c) Tam thức f(x) = – 3x2 + 12x + 1 có ∆' = 62 – (– 3) . 1 = 39 > 0 nên f(x) có hai nghiệm x1=6393 và x2=6+393.

Vì hệ số a = – 3 < 0 nên ta có bảng xét dấu f(x):

x

– ∞                6393                   6+393                  + ∞

f(x)

             –             0              +             0                –

Vậy tập nghiệm của bất phương trình là S = ;63936+393;+.

d) Tam thức f(x) = 5x2 + x + 1 có ∆ = 12 – 4 . 5 . 1 = – 19 < 0 và hệ số a = 5 > 0 nên f(x) luôn dương (cùng dấu a) với mọi x ∈ ℝ.

Vậy tập nghiệm của bất phương trình là S = ℝ.

Đánh giá

0

0 đánh giá