Bài 6.15 trang 24 Toán 10 Tập 2 | Kết nối tri thức Giải Toán lớp 10

2.4 K

Với giải Bài 6.15 trang 24 SGK Toán 10 Kết nối tri thức chi tiết trong Bài 17: Dấu của tam thức bậc hai giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SGK Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài 17: Dấu của tam thức bậc hai

Bài 6.15 trang 24 Toán 10 Tập 2: Xét dấu các tam thức bậc hai sau:

a) 3x2 – 4x + 1;

b) x2 + 2x + 1;

c) – x2 + 3x – 2;

d) – x2 + x – 1.

Lời giải:

a) Xét tam thức f(x) = 3x2 – 4x + 1 có ∆' = (– 2)2 – 3 . 1 = 1 > 0, hệ số a = 3 > 0 và có hai nghiệm phân biệt x1 = 13; x2 = 1.

Ta có bảng xét dấu f(x):

x

– ∞                   13                        1                     + ∞

f(x)

             +          0             –          0            +

 

Vậy f(x) > 0 khi x;131;+ và f(x) < 0 khi x13;1.

b) Xét tam thức f(x) = x2 + 2x + 1 có ∆' = 12 – 1 . 1 = 0 và a > 1 nên f(x) có nghiệm kép x = – 1 và f(x) > 0 với mọi x ≠ – 1.  

c) Xét tam thức f(x) = – x2 + 3x – 2 có ∆ = 32 – 4 . (– 1) . (– 2) = 1 > 0, hệ số a = – 1 < 0 và có hai nghiệm phân biệt x1 = 1; x2 = 2.

Ta có bảng xét dấu f(x):

x

– ∞                   1                        2                     + ∞

f(x)

             –          0           +          0            –

 

Vậy f(x) < 0 khi x ∈ (– ∞; 1) ∪ (2; + ∞) và f(x) > 0 khi x ∈ (1; 2).  

d) Xét tam thức f(x) = – x2 + x – 1 có ∆ = 12 – 4 . (– 1) . (– 1) = – 3 < 0 và hệ số a = – 1 < 0 nên f(x) < 0 với mọi x ∈ ℝ.

Đánh giá

0

0 đánh giá