Với giải Bài 7 trang 66 SBT Toán lớp 7 Chân trời sáng tạo chi tiết trong Bài tập cuối chương 8 trang 65, 66 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:
Giải SBT Toán lớp 7 Bài tập cuối chương 8 trang 65, 66
Bài 7 trang 66 SBT Toán 7 Tập 2: Cho tam giác ABC có ba đường phân giác AD, BE, CF đồng quy tại I. Vẽ IH vuông góc với BC tại H. Chứng minh rằng
Lời giải:
Vì BI là phân giác của góc ABC nên .
Vì CI là phân giác của góc ACB nên .
Vì AI là phân giác của góc ACB nên .
Ta có: (hai góc kề bù).
Do đó (1)
Trong ∆AIC có (tổng ba góc trong một tam giác).
Suy ra (2)
Từ (1) và (2) ta có:
Nên .
Trong ∆CAB ta có: (tổng ba góc trong một tam giác)
Nên
Suy ra
(3)
Vì tam giác BIH vuông tại H nên .
Suy ra (4)
Từ (3) và (4) suy ra .
Vậy .
Xem thêm các bài giải sách bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các bài giải SBT Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Bài 9: Tính chất ba đường phân giác của tam giác
Bài 1: Làm quen với biến cố ngẫu nhiên