Cho tam giác ABC có góc A là góc tù. Các đường trung trực của AB và AC cắt nhau tại O

4.7 K

Với giải Bài 4 trang 58 SBT Toán lớp 7 Chân trời sáng tạo chi tiết trong Bài 6: Tính chất ba đường trung trực của tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 6: Tính chất ba đường trung trực của tam giác

Bài 4 trang 58 SBT Toán 7 Tập 2: Cho tam giác ABC có góc A là góc tù. Các đường trung trực của AB và AC cắt nhau tại O và lần lượt cắt BC tại E và F. Hãy chứng minh:

a) ∆EOA = ∆EOB; ∆FOA = ∆FOC.

b) Chứng minh rằng AO là tia phân giác của góc EAF.

Lời giải:

Cho tam giác ABC có góc A là góc tù Các đường trung trực của AB và AC

a) Vì O là giao điểm của hai đường trung trực của tam giác ABC nên OA = OB = OC.

Vì E nằm trên trung trực của AB nên ta có EA = EB.

Vì F nằm trên trung trực của AC nên ta có: FA = FC.

• Xét tam giác OEA và tam giác OEB có:

AE = BE (chứng minh trên),

OA = OB (chứng minh trên),

OE là cạnh chung.

Do đó ∆EOA = ∆EOB (c.c.c).

• Xét tam giác OFA và tam giác OFC có:

AF = CF (chứng minh trên),

OA = OC (chứng minh trên),

OF là cạnh chung.

Do đó ∆FOA = ∆FOC (c.c.c).

Vậy ∆EOA = ∆EOB; ∆FOA = ∆FOC.

b) Ta có OB = OC nên tam giác OBC cân tại O.

Suy ra OBE^=OCF^ (1)

Ta có ∆OEA = ∆OEB (câu a)

Suy ra OAE^=OBE^ (hai góc tương ứng)(2)

Tương tự từ ∆OFA = ∆OFC (câu a)

Suy ra OAF^=OCF^ (hai góc tương ứng)(3)

Từ (1),(2),(3) ta có: OAE^=OAF^

Suy ra AO là tia phân giác của góc EAF.

Vậy AO là tia phân giác của góc EAF.

Đánh giá

0

0 đánh giá