Với giải Bài 11 trang 70 SBT Toán lớp 7 Kết nối tri thức chi tiết trong Bài tập ôn tập cuối năm giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:
Giải SBT Toán lớp 7 Bài tập ôn tập cuối năm
Bài 11 trang 70 sách bài tập Toán lớp 7 Tập 2: Cho năm điểm A, B, C, D, E cùng nằm trên một đường thẳng d sao cho AB = DE, BC = CD. Điểm M không thuộc d sao cho MC vuông góc với d. Chứng minh rằng:
a) ΔMBC = ΔMDC và ΔMAC = ΔMEC.
b) ΔMAB = ΔMED.
Lời giải:
a) Xét ΔMBC và ΔMDC cùng vuông tại C có :
BC = CD (gt);
MC là cạnh chung.
Do đó ΔMBC = ΔMDC (hai cạnh góc vuông).
Ta có: CA = BC + AB
CE = CD + DE
Mà AB = DE (gt); BC = CD (gt)
Do đó CA = CE
Xét ΔMAC và ΔMEC cùng vuông tại C có :
CA = CE (cmt);
MC là cạnh chung.
Do đó ΔMAC = ΔMEC (hai cạnh góc vuông).
b) Xét ΔMAB và ΔMED có :
AB = ED ( gt);
MA = ME (ΔMAC = ΔMEC, hai cạnh tương ứng);
(ΔMAC = ΔMEC, hai góc tương ứng).
Do đó ΔMAB = ΔMED (c.g.c).
Xem thêm lời giải SBT Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Bài 2 trang 69 SBT Toán 7 Tập 2: Tính giá trị của biểu thức sau:...
Bài 4 trang 69 SBT Toán 7 Tập 2: a) Không dùng máy tính, hãy tính ...
Bài 5 trang 69 SBT Toán 7 Tập 2: a) Trên trục số, hãy xác định điểm biểu diễn số ...
Bài 8 trang 69 SBT Toán 7 Tập 2: Hai đa thức A(x) và B(x) thỏa mãn:...
Bài 9 trang 70 SBT Toán 7 Tập 2: Cho đa thức F(x) = x4 − x3 − 6x2 + 15x − 9...
Bài 10 trang 70 SBT Toán 7 Tập 2: Tính góc Mby trong Hình 1, biết rằng Ax // By...