Bài 4 trang 87 Toán 7 Tập 1 | Chân trời sáng tạo Giải toán lớp 7

3.6 K

Với giải Bài 4 trang 87 Toán lớp 7 Chân trời sáng tạo chi tiết trong Bài tập cuối chương 4 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:

Giải bài tập Toán lớp 7 Bài tập cuối chương 4

Bài 4 trang 87 Toán lớp 7: Quan sát Hình 3

a) Tính B1

b) Chứng minh rằng AC // BD

c) Tính A2

Phương pháp giải:

*Sử dụng dấu hiệu nhận biết 2 đường thẳng song song: Nếu đường thẳng cắt 2 đường thẳng a,b và trong các góc tạo thành có một cặp góc so le trong bằng nhau (hoặc một cặp góc đồng vị bằng nhau) thì a // b

*Sử dụng tính chất của 2 đường thẳng song song:

Một đường thẳng cắt hai đường thẳng song song thì:

+ 2 góc so le trong bằng nhau

+ 2 góc đồng vị bằng nhau

*Tổng các góc kề bù là 180 độ

Lời giải:

a) Vì B1^+70+30=180 ( kề bù) nên B1^=80

b) Vì B1^=A1^(=80), mà 2 góc này ở vị trí so le trong nên AC // BD (Dấu hiệu nhận biết 2 đường thẳng song song)

c) Vì AC // BD nên DBA^=A1^ (2 góc so le trong), mà DBA^=70A1^=70

Bài tập vận dụng:

Bài 1:

a) Hãy kể tên các cặp góc kề nhau trong hình vẽ.

b) Tìm số đo của góc xOz^, biết xOy^=700 và yOz^=550.

Lý thuyết Toán 7 Chân trời sáng tạo Bài 1: Các góc ở vị trí đặc biệt (ảnh 7)

Hướng dẫn giải

a) Các cặp góc kề nhau:

xOy^ và yOz^ (vì có cạnh chung Oy và không có điểm trong chung).

xOy^ và tOy^ (vì có cạnh chung Oy và không có điểm trong chung).

xOz^ và tOz^ (vì có cạnh chung Oz và không có điểm trong chung).

yOz^ và tOz^ (vì có cạnh chung Oz và không có điểm trong chung).

b) Vì xOy^ và yOz^ là hai góc kề nhau nên :

xOz^=xOy^+yOz^.

Suy ra: xOz^=700+550=1250

Vậy xOz^=1250.

Bài 2: Cho hai góc xOy^ và yOz^ kề bù với nhau. Biết xOy^=300. Tính yOz^.

Hướng dẫn giải

Vì hai góc xOy^ và yOz^ kề bù với nhau nên xOy^+yOz^=1800 .

Suy ra: yOz^=1800xOy^.

Do đó yOz^=1800300=1500.

Vậy yOz^=1500.

Bài 3: Tính các góc A2^;A3^;A4^ trong hình, biết A1^=400.

Lý thuyết Toán 7 Chân trời sáng tạo Bài 1: Các góc ở vị trí đặc biệt (ảnh 8)

Hướng dẫn giải

Ta có A3^=A1^=400 (hai góc đối đỉnh).

Ta có A1^+A2^=1800 (hai góc kề bù)

Suy ra A2^=1800A1^=1800400=1400.

A4^=A2^=1400 (hai góc đối đỉnh)

Vậy A2^= 1400;A3^=400;A4^=1400.

Xem thêm các bài giải Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Bài 1 trang 86 Toán lớp 7: Trong những câu sau, em hãy chọn những câu đúng...

Bài 2 trang 86 Toán lớp 7: Quan sát Hình 1, biết d // h. Hãy kể tên một số cặp góc bằng nhau có trong Hình 1...

Bài 3 trang 87 Toán lớp 7: Quan sát Hình 2. Chứng minh rằng xy // zt...

Bài 5 trang 87 Toán lớp 7: Quan sát Hình 4. Chứng minh rằng:...

Bài 6 trang 87 Toán lớp 7: Cho Hình 5 có B1^=130°. Số đo của A1^ là bao nhiêu?...

Bài 7 trang 87 Toán lớp 7: Cho Hình 6, biết hai đường thẳng a và b song song với nhau và A1^=50°...

Bài 8 trang 87 Toán lớp 7: Vẽ đường thẳng m song song với đường thẳng n. Vẽ đường thẳng d cắt đường thẳng m tại điểm I...

Xem thêm các bài giải SGK Toán lớp 7 Chân trời sáng tạo hay, chi tiết:

Bài 5: Hoạt động thực hành và trải nghiệm: Vẽ hai đường song song và đo góc bằng phần mềm GeoGebra

Bài tập cuối chương 4

Bài 1: Thu thập và phân loại dữ liệu

Bài 2: Biểu đồ hình quạt tròn

Bài 3: Biểu đồ đoạn thẳng

Đánh giá

0

0 đánh giá