Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng 

639

Với giải Bài 75 trang 98 SBT Toán lớp 10 Cánh diều chi tiết trong Bài tập cuối chương 7 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải SBT Toán lớp 10 Bài tập cuối chương 7

Bài 75 trang 98 SBT Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng ∆1 x=2+(căn3)t, y=-1+3t và ∆2 x=3-(căn3)t', y=-t'  Δ2: Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng ∆1 x=2+(căn3)t, y=-1+3t và ∆2 x=3-(căn3)t', y=-t'

Số đo góc giữa hai đường thẳng ∆1 và ∆2 là:

A. 300;

B. 450;

C. 900;

 

D. 600.

Lời giải:

Ta thấy vectơ chỉ phương của Δ1 là: u1=(3;3)

Vectơ chỉ phương của Δ2 là: u2=(-3;-1)

Ta có: cos(u1,u2)

= Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng ∆1 x=2+(căn3)t, y=-1+3t và ∆2 x=3-(căn3)t', y=-t'

Suy ra (u1,u2) = 150o

Suy ra góc giữa 2 đường thẳng chính là góc nhọn giữa 2 vectơ chỉ phương của 2 đường thẳng đó.

Do đó (Δ1,Δ2)=180o-(u1,u2)=30o

Vậy chọn đáp án A.

Đánh giá

0

0 đánh giá