Bài 2 trang 82 Toán 7 Tập 2 | Chân trời sáng tạo Giải toán lớp 7

781

Với giải Bài 2 trang 82 Toán lớp 7 Chân trời sáng tạo chi tiết trong Bài 9: Tính chất ba đường phân giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:

Giải bài tập Toán lớp 7 Bài 9: Tính chất ba đường phân giác

Bài 2 trang 82 Toán lớp 7 Tập 2: Cho tam giác ABC cân tại A. Kẻ đường trung tuyến AM. Tia phân giác của góc B cắt AM tại I. Chứng minh rằng CI là tia phân giác của góc C.

Lời giải:

Cho tam giác ABC cân tại A. Kẻ đường trung tuyến AM

Do ABC cân tại A nên AB = AC.

Do AM là đường trung tuyến của ABC nên M là trung điểm của BC.

Xét AMB và AMC có:

AB = AC (chứng minh trên).

AM chung.

MB = MC (do M là trung điểm của BC).

Suy ra AMB = AMC (c.c.c).

Do đó MAB^=MAC^(2 góc tương ứng).

Mà AM nằm giữa AB và AC nên AM là đường phân giác của BAC^.

Tam giác ABC có hai đường phân giác AM và BI cắt nhau tại I.

Mà ba đường phân giác của tam giác ABC đồng quy nên CI là tia phân giác của góc C.

Vậy CI là tia phân giác của góc C.

Đánh giá

0

0 đánh giá