HĐ1 trang 34 Toán 10 tập 1 | Kết nối tri thức Giải Toán lớp 10

1.7 K

Với giải HĐ1 trang 34 Toán lớp 10 Kết nối tri thức với cuộc sống trong Bài 5: Giá trị lượng giác của một góc từ 0 đến 180 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài 5: Giá trị lượng giác của một góc từ 0 đến 180

HĐ1 trang 34 Toán lớp 10: a) Nêu nhận xét về vị trí điểm M trên nửa đường tròn đơn vị trong mỗi trường hợp sau:

α=90o;α<90o;α>90o.

b) Khi 0o<α<90o, nêu mối quan hệ giữa cosα,sinα với hoành độ và tung độ của điểm M.

 (ảnh 1)

Phương pháp giải:

a) Quan sát gócα=xOM^ trong các trường hợp tương ứng. Khi ấy M thuộc cung nào?

b) Khi 0o<α<90o thì cosα=|x0|OM,sinα=|y0|OM; trong đó OM=R=1.

Lời giải:

a) Khi α=90o, điểm M trùng với điểm C. (Vì xOC^=AOC^=90o)

Khi α<90o, điểm M thuộc vào cung AC (bên phải trục tung)

Khi α>90o, điểm M thuộc vào cung BC (bên trái trục tung)

b) Khi 0o<α<90o , ta có:

 (ảnh 2)

cosα=|x0|OM=|x0|=x0;sinα=|y0|OM=|yo|=yo

Vì OM=R=1x0tia Oxnên x0>0y0tia Oynên y0>0

Vậy cosα là hoành độ x0của điểm M, sinα là tung độ y0 của điểm M.

Lý thuyết Giá trị lượng giác của một góc

Trong mặt phẳng tọa độ Oxy, nửa đường tròn tâm O, bán kính R = 1 nằm phía trên trục hoành được gọi là nửa đường tròn đơn vị.

Cho trước một góc α, 0° ≤ α ≤ 180°. Khi đó, có duy nhất điểm M(x0; y0) trên nửa đường tròn đơn vị để xOM^=α.

Giá trị lượng giác của một góc từ 00 đến 1800 (Lý thuyết + Bài tập Toán lớp 10) – Kết nối tri thức (ảnh 1)

- Định nghĩa tỉ số lượng giác của một góc từ 0o đến 180o

Với mỗi góc α (0° ≤ α ≤ 180°), gọi M(x0; y0) là điểm trên nửa đường tròn đơn vị sao cho  xOM^=α. Khi đó:

+ sin của góc α là tung độ y0 của điểm M, được kí hiệu là sin α;

+ côsin của góc α là hoành độ x0 của điểm M, được kí hiệu là cos α;

+ Khi α ≠ 90° (hay x0 ≠ 0), tang của α là y0x0, được kí hiệu là tan α;

+ Khi α ≠ 0° và α ≠ 180° (hay y0 ≠ 0), côtang của α là x0y0, được kí hiệu là cot α.

- Từ định nghĩa trên ta có:

tanα =sinαcosα(α90°);cotα=cosαsinα(α0° α180°);tanα=1cotα (α{0°;90°;180°})

- Bảng giá trị lượng giác (GTLG) của một số góc đặc biệt:

Giá trị lượng giác của một góc từ 00 đến 1800 (Lý thuyết + Bài tập Toán lớp 10) – Kết nối tri thức (ảnh 1)

Chú ý: Kí hiệu || chỉ giá trị lượng giác tương ứng không xác định.

Ví dụ: Tìm các giá trị lượng giác của góc 120°.

Giá trị lượng giác của một góc từ 00 đến 1800 (Lý thuyết + Bài tập Toán lớp 10) – Kết nối tri thức (ảnh 1)

Gọi M là điểm trên nửa đường tròn đơn vị sao cho xOM^=120o. Gọi N, K tương ứng là hình chiếu vuông góc của M lên các trục Ox, Oy.

Do xOM^=120o và xOK^=90onên KOM^=30ovà MON^=60o.

Từ bảng GTLG của một số góc đặc biệt:

Ta có: cos 60o = 12 và cos 30o = 32

Các tam giác MOK và MON là các tam giác vuông với cạnh huyền bằng 1

Suy ra ON = cosMON^.OM = cos60o.1 = 12 và OK = cosMOK^.OM = cos30o.1 = 32

Mặt khác, do điểm M nằm bên trái trục tung nên M12;32

Theo định nghĩa giá trị lượng giác ta có:

sin 120o = 32

cos 120o =  12

tan 120o = sin120ocos120o=3

cot 120o = cos120osin120o=13.

Vậy sin 120o = 32; cos 120o =  12; tan 120o = 3; cot 120o = 13.

- Ta có thể dùng máy tính bỏ túi để tính giá trị gần đúng của các giá trị lượng giác của một góc.

Ví dụ:

Giá trị lượng giác của một góc từ 00 đến 1800 (Lý thuyết + Bài tập Toán lớp 10) – Kết nối tri thức (ảnh 1)

- Ta cũng có thể tìm được góc khi biết một giá trị lượng giác của góc đó.

Ví dụ:

 

Giá trị lượng giác của một góc từ 00 đến 1800 (Lý thuyết + Bài tập Toán lớp 10) – Kết nối tri thức (ảnh 1)

Chú ý:

+ Khi tìm x biết sin x, máy tính chỉ đưa ra giá trị x ≤ 90°.

+ Muốn tìm x khi biết cos x, tan x, ta cũng làm tương tự như trên, chỉ thay phím Giá trị lượng giác của một góc từ 00 đến 1800 (Lý thuyết + Bài tập Toán lớp 10) – Kết nối tri thức (ảnh 1) tương ứng bởi phím Giá trị lượng giác của một góc từ 00 đến 1800 (Lý thuyết + Bài tập Toán lớp 10) – Kết nối tri thức (ảnh 1).

Xem thêm các bài giải Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Câu  hỏi mở đầu trang 33 Toán lớp 10: Bạn đã biết tỉ số lượng giác của một góc nhọn. Đối với góc tù thì sao?...

Luyện tập 1 trang 34 Toán lớp 10:  Tìm các giá trị lượng giác của góc 120o (H.3.4)...

HĐ2 trang 36 Toán lớp 10: Nêu nhận xét về vị trí của hai điểm M, M’ đối với trục Oy. Từ đó nêu các mối quan hệ giữa sinα và sin(180oα), giữa cosα và  cos(180oα)...

Luyện tập 2 trang 36 Toán lớp 10: Trong Hình 3.6, hai điểm M, N ứng với hai góc phụ nhau α và 90oα (xOM^=α,xON^=90oα). Chứng mình rằng ΔMOP=ΔNOQ. Từ đó nêu mối quan hệ giữa cosα và sin(90oα)...

Vận dụng trang 37 Toán lớp 10: Một chiếc đu quay có bán kính 75 m, tâm của vòng quay ở độ cao 90 m (H.3.7), thời gian thực hiện mỗi vòng quay của đu quay là 30 phút. Nếu một người vào cabin tại vị trí thấp nhất của vòng quay, thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét?...

Bài 3.1 trang 37 Toán lớp 10: Không dùng bảng số hay máy tính cầm tay, tính giá trị của các biểu thức sau:...

Bài 3.2 trang 37 Toán lớp 10: Đơn giản các biểu thức sau:...

Bài 3.3 trang 37 Toán lớp 10: Chứng minh các hệ thức sau:...

Bài 3.4 trang 37 Toán lớp 10: Cho góc α(0o<α<180o) thỏa mãn tanα=3...

Xem thêm các bài giải SGK Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài tập cuối chương 2

Bài 5: Giá trị lượng giác của một góc từ 0 đến 180

Bài 6: Hệ thức lượng trong tam giác

Bài tập cuối chương 3

Bài 7: Các khái niệm mở đầu

Đánh giá

0

0 đánh giá