Với giải Vận dụng trang 37 Toán lớp 10 Kết nối tri thức với cuộc sống trong Bài 5: Giá trị lượng giác của một góc từ 0 đến 180 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Giải bài tập Toán lớp 10 Bài 5: Giá trị lượng giác của một góc từ 0 đến 180
Vận dụng trang 37 Toán lớp 10: Một chiếc đu quay có bán kính 75 m, tâm của vòng quay ở độ cao 90 m (H.3.7), thời gian thực hiện mỗi vòng quay của đu quay là 30 phút. Nếu một người vào cabin tại vị trí thấp nhất của vòng quay, thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét?
Phương pháp giải:
Bước 1: Giả sử chiều quay của chiếc đu quay. Xác định vị trí của cabin sau 20 phút.
Bước 2: Dựa vào giá trị lượng giác của góc, xác định khoảng cách từ cabin đến Ox (trong hình H.3.7)
Bước 3: Suy ra độ cao của người đó sau 20 phút quay.
Lời giải:
Giả sử chiếc đu quay quay theo chiều kim đồng hồ.
Gọi M là vị trí của cabin, M’ là vị trí của cabin sau 20 phút và các điểm A A’, B, H như hình dưới.
Vì đi cả vòng quay mất 30 phút nên sau 20 phút, cabin sẽ đi quãng đường bằng chu vi đường tròn.
Sau 15 phút cabin đi chuyển từ điểm M đến điểm B, đi được chu vi đường tròn.
Trong 5 phút tiếp theo cabin đi chuyển từ điểm B đến điểm M’ tương ứng chu vi đường tròn hay cung .
Do đó:
Độ cao của người đó là: 37,5 + 90 = 127,5 (m).
Vậy sau 20 phút quay người đó ở độ cao 127,5 m.
Lý thuyết Mối quan hệ giữa các giá trị lượng giác của hai góc bù nhau
Đối với hai góc bù nhau, α và 180° – α, ta có:
sin (180° – α) = sin α;
cos (180° – α) = – cos α;
tan (180° – α) = – tan α (α ≠ 90°);
cot (180° – α) = – cot α (0° < α < 180°).
Chú ý:
- Hai góc bù nhau có sin bằng nhau; có côsin, tang, côtang đối nhau.
Ví dụ: Tính các giá trị lượng giác của góc 135°.
Hướng dẫn giải
Ta có 135° + 45° = 180°, vì vậy góc 135° và góc 45° là hai góc bù nhau:
Suy ra:
sin135° = sin45° =
cos135° = – cos45° =
tan135° = – tan45° = –1
cot135° = – cot45° = –1
Vậy sin135° = ; cos135° = ; tan135° = –1 ; cot135° = –1.
- Hai góc phụ nhau có sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.
Ví dụ:
Ta có 30° + 60° = 90° nên góc 30° và góc 60° là hai góc phụ nhau.
Khi đó:
sin30° = cos60° =
tan30° = cot60° = .
Xem thêm các bài giải Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Câu hỏi mở đầu trang 33 Toán lớp 10: Bạn đã biết tỉ số lượng giác của một góc nhọn. Đối với góc tù thì sao?...
Luyện tập 1 trang 34 Toán lớp 10: Tìm các giá trị lượng giác của góc (H.3.4)...
Bài 3.2 trang 37 Toán lớp 10: Đơn giản các biểu thức sau:...
Bài 3.3 trang 37 Toán lớp 10: Chứng minh các hệ thức sau:...
Bài 3.4 trang 37 Toán lớp 10: Cho góc thỏa mãn ...
Xem thêm các bài giải SGK Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài 5: Giá trị lượng giác của một góc từ 0 đến 180
Bài 6: Hệ thức lượng trong tam giác