Với giải Hoạt động 3 trang 50 Toán lớp 10 Cánh diều chi tiết trong Bài 4: Bất phương trình bậc hai một ẩn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Giải bài tập Toán lớp 10 Bài 4: Bất phương trình bậc hai một ẩn
Hoạt động 3 trang 50 Toán lớp 10: Cho bất phương trình .
Quan sát parabol ở Hình 26 và cho biết:
a) Bất phương trình (2) biểu diễn phần parabol (P) nằm ở phía nào của trục hoành.
b) Phần parabol (P) nằm phía trên trục hoành ứng với những giá trị nào của x.
Phương pháp giải:
- Nếu dấu bất phương trình dương thì bất phương trình biểu diễn phần (P) phía trên trục hoành và ngược lại.
Lời giải:
a) Từ đồ thị ta thấy bất phương trình (2) biểu diễn phần parabol (P) nằm ở phía trên trục hoành.
b) Phần parabol (P) nằm phía trên trục hoành ứng với các giá trị của x thuộc
Lý thuyết Giải bất phương trình bậc hai một ẩn
2.1. Giải bất phương trình bậc hai một ẩn bằng cách xét dấu của tam thức bậc hai
Nhận xét: Để giải bất phương trình bậc hai (một ẩn) có dạng:
f(x) > 0 (f(x) = ax2 + bx + c), ta chuyển việc giải bất phương trình đó về việc tìm tập hợp những giá trị của x sao cho f(x) mang dấu “+”. Cụ thể, ta làm như sau:
Bước 1. Xác định dấu của hệ số a và tìm nghiệm của f(x) (nếu có).
Bước 2. Sử dụng định lí về dấu của tam thức bậc hai để tìm tập hợp những giá trị của x sao cho f(x) mang dấu “+”.
Chú ý: Các bất phương trình bậc hai có dạng f(x) < 0, f(x) ≥ 0, f(x) ≤ 0 được giải bằng cách tương tự.
Ví dụ: Giải các bất phương trình bậc hai sau:
a) ;
b) .
Hướng dẫn giải
a) Tam thức bậc hai có hai nghiệm phân biệt , và có hệ số a = 1 > 0. Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức mang dấu “+” là
Vậy tập nghiệm của bất phương trình là
b) Tam thức bậc hai có hai nghiệm , và có hệ số .
Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức mang dấu “+” là (– 4; 1).
Vậy tập nghiệm của bất phương trình – x2 – 3x + 4 > 0 là (4; 1).
2.2. Giải bất phương trình bậc hai một ẩn bằng cách sử dụng đồ thị
– Giải bất phương trình bậc hai ax2 + bx + c > 0 là tìm tập hợp những giá trị của x ứng với phần parabol y = ax2 + bx + c nằm phía trên trục hoành.
– Tương tự, giải bất phương trình bậc hai ax2 + bx + c < 0 là tìm tập hợp những giá trị của x ứng với phần parabol y = ax2 + bx + c nằm phía dưới trục hoành.
Như vậy, để giải bất phương trình bậc hai (một ẩn) có dạng:
f(x) > 0 (f(x) = ax2 + bx + c) bằng cách sử dụng đồ thị, ta có thể làm như sau: Dựa vào parabol y = ax2 + bx + c, ta tìm tập hợp những giá trị của x ứng với phần parabol đó nằm phía trên trục hoành. Đối vổi các bất phương trình bậc hai có dạng f(x) < 0, f(x) ≥ 0, ,f(x) ≤ 0, ta cũng làm tương tự.
Ví dụ: Quan sát đồ thị và giải các bất phương trình bậc hai sau:
a)
b) > 0
Đồ thị y = Đồ thị y =
Hướng dẫn giải
a) Quan sát đồ thị, ta thấy biểu diễn phần parabol y = nằm phía dưới trục hoành, tương ứng với 1 < x < 2.
Vậy tập nghiệm của bất phương trình là khoảng (1; 2).
b) Quan sát đồ thị, ta thấy > 0 biểu diễn phần parabol y = nằm phía trên trục hoành, tương ứng với 0 < x < 2.
Vậy tập nghiệm của bất phương trình > 0 là khoảng (0 ; 2).
2.3. Ứng dụng của bất phương trình bậc hai một ẩn
Bất phương trình bậc hai một ẩn có nhiều ứng dụng, chẳng hạn: giải một số hệ bất phương trình; ứng dụng vào tính toán lợi nhuận trong kinh doanh; tính toán điểm rơi trong pháo binh;...
Chúng ta sẽ làm quen với những ứng dụng đó qua một số ví dụ sau đây.
Ví dụ 4: Tìm giao các tập nghiệm của hai bất phương trình sau:
(3) và (4)
Hướng dẫn giải
Ta có: Tập nghiệm của bất phương trình (3) là S3= (−3 ; 1);
Tập nghiệm của bất phương trình (4) là S4= (1 ; 3).
Giao các tập nghiệm của hai bất phương trình trên là:
.
Xem thêm các bài giải Toán lớp 10 Cánh diều hay, chi tiết khác:
Câu hỏi khởi động trang 49 Toán lớp 10: Bác Dũng muốn uốn tấm tôn phẳng có dạng hình chữ nhật với bề ngang 32 cm thành một rãnh dẫn nước bằng cách chia tấm tôn đó thành ba phần rồi gấp hai bên lại theo một góc vuông (Hình 25).....
Hoạt động 1 trang 49 Toán lớp 10: Quan sát và nêu đặc điểm của biểu thức ở vế trái của bất phương trình ...
Luyện tập vận dụng 1 trang 49 Toán lớp 10: a) Cho hai ví dụ về bất phương trình bậc hai một ẩn....
Hoạt động 2 trang 50 Toán lớp 10: a) Lập bảng xét dấu của tam thức bậc hai...
Luyện tập vận dụng 2 trang 49 Toán lớp 10: Giải các bất phương trình bậc hai sau:...
Luyện tập vận dụng 4 trang 53 Toán lớp 10: Tổng chi phí T (đơn vị tính: nghìn đồng) để sản xuất Q sản phẩm được cho bởi biểu thức...
Bài 2 trang 54 Toán lớp 10: Dựa vào đồ thị hàm số bậc hai...
Bài 3 trang 54 Toán lớp 10: Giải các bất phương trình bậc hai sau:...
Bài 4 trang 54 Toán lớp 10: Tìm m để phương trình....
Bài 5 trang 54 Toán lớp 10: Xét hệ toạ độ Oth trên mặt phẳng, trong đó trục Ot biểu thị thời gian t (tính bằng giây) và trục Oh biểu thị độ cao h (tính bằng mét).....
Xem thêm các bài giải SGK Toán 10 Cánh diều hay, chi tiết khác:
Bài 3: Dấu của tam thức bậc hai
Bài 4: Bất phương trình bậc hai một ẩn
Bài 5: Hai dạng phương trình quy về phương trình bậc hai
Bài 1: Giá trị lượng giác của một góc từ 0° đến 180°. Định lí côsin và định lí sin trong tam giác