Bài 1 trang 19 Toán 10 Tập 1 | Cánh diều Giải toán lớp 10

2.7 K

Với giải Bài 1 trang 19 Toán lớp 10 Cánh diều chi tiết trong Bài tập cuối Chương 1 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài tập cuối Chương 1

Bài 1 trang 19 Toán lớp 10: Phát biểu nào sau đây là một mệnh đề toán học?

a) Tích của ba số tự nhiên liên tiếp luôn chia hết cho 3.

b) Nếu AMB^=90o thì M nằm trên đường tròn đường kính AB.

c) Ngày 2 tháng 9 là ngày Quốc Khánh của nuốc Cộng hòa Xã hội chủ nghĩa Việt Nam

Phương pháp giải:

Mệnh đề toán học là một phát biểu, một khẳng định (có thể đúng hoặc sai) về một sự kiện trong toán học.

Lời giải:

a) Phát biểu “Tích của ba số tự nhiên liên tiếp luôn chia hết cho 3” là một mệnh đề toán học.

b) Phát biểu “Nếu AMB^=90o thì M nằm trên đường tròn đường kính AB” là một mệnh đề toán học.

c) Phát biểu “Ngày 2 tháng 9 là ngày Quốc Khánh của nuốc Cộng hòa Xã hội chủ nghĩa Việt Nam” không là một mệnh đề toán học (vì không liên quan đến sự kiện nào trong toán học).

Bài tập vận dụng:

Bài 1. Phát biểu các mệnh đề sau, sử dụng khái niệm điều kiện cần và điều kiện đủ:

a) Các số tự nhiên có tận cùng bằng 0 đều chia hết cho 5.

b) Hai tam giác bằng nhau có diện tích bằng nhau.

Hướng dẫn giải

a) Một số tự nhiên có tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.

Một số tự nhiên chia hết cho 5 là điều kiện cần để số đó có tận cùng bằng 0.

b) Điều kiện đủ để hai tam giác có diện tích bằng nhau là hai tam giác đó bằng nhau.

Điều kiện cần để hai tam giác bằng nhau là hai tam giác đó có diện tích bằng nhau.

Bài 2. Biết P là tập hợp các số tự nhiên lớn hơn 15 và là ước số của 60. Biểu diễn tập hợp P bằng hai cách và tìm tất cả các tập hợp con của nó.

Hướng dẫn giải

Theo cách nêu tính chất đặc trưng, ta có: P = {x ∈ ℕ| x > 15 và 60 ⁝ x}.

Ta có: 60 = 22.3.5

Suy ra tập các ước số tự nhiên của 60 là Ư(60) = {1; 2; 3; 4; 5; 6; 10; 12; 15; 20; 30; 60}.

Trong đó các ước số tự nhiên lớn hơn 15 là: 20; 30; 60.

Do đó theo cách liệt kê: P = {20; 30; 60}

Các tập hợp con của P là:

, {20}, {30}, {60}, {20; 30}, {20; 60}, {30; 60}, {20; 30; 60}.

Bài 3. Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng sai của mệnh đề phủ định đó:

a) A: “Phương trình x2 + 4x + 5 = 0 có nghiệm”;

b) B: “Số 2048 chia hết cho 3”;

c) C:3+122 “là một số hữu tỉ”;

d) D: “x = 5 là một nghiệm của phương trình x3 − 4x + 1 = 0”.

Hướng dẫn giải:

a) Mệnh đề phủ định của mệnh đề A là A¯: “Phương trình x2 + 4x + 5 = 0 vô nghiệm”.

Xét: Δ'  =  225  =  1<0. Do đó phương trình vô nghiệm.

Mệnh đề A¯ là mệnh đề đúng.

b) Mệnh đề phủ định của mệnh đề B là B¯: “Số 2048 không chia hết cho 3”.

Do 2 + 0 + 4 + 8 = 14 không chia hết cho 3, nên 2048 không chia hết cho 3

Do đó mệnh đề B¯ là mệnh đề đúng.

c) Mệnh đề phủ định của mệnh đề C là C¯: “3+122 không phải số hữu tỉ” hoặc “3+122 là một số vô tỉ”.

Xét: 3+122=3+236+12=27 là số hữu tỉ.

Mệnh đề C¯ là mệnh đề sai.

d) Mệnh đề phủ định của mệnh đề D là D¯: “x = 5 không phải là nghiệm của phương trình x3 – 4x + 1 = 0”.

Thay x = 5 vào biểu thức x3 – 4x + 1, ta có: 53 – 4.5 + 1 = 106 ≠ 0.

Vậy x = 5 không là nghiệm của phương trình x3 – 4x + 1 = 0.

Do đó mệnh đề D¯ là mệnh đề đúng.

Xem thêm các bài giải Toán lớp 10 Cánh diều hay, chi tiết khác:

Bài 2 trang 19 Toán lớp 10: Lập mệnh đề phủ định của mỗi mệnh đề sau và nhận xét tính đúng sai của mệnh đề phủ định đó....

Bài 3 trang 19 Toán lớp 10: Cho tứ giác ABCD. Lập mệnh đề PQ và xét tính đúng sai của mệnh đề đó với:....

Bài 4 trang 19 Toán lớp 10: Lập mệnh đề phủ định của mỗi mệnh đề sau:....

Bài 5 trang 19 Toán lớp 10: Dùng kí hiệu để viết mỗi tập hợp sau và biểu diễn mỗi tập hợp đó trên trục số:....

Bài 6 trang 19 Toán lớp 10: Giải Bóng đá vô địch thế giới World Cup 2018 được tổ chức ở Liên bang Nga gồm 32 đội....

Bài 7 trang 19 Toán lớp 10: Cho hai tập hợp:....

Bài 8 trang 19 Toán lớp 10: Gọi M là tập nghiệm....

Xem thêm các bài giải SGK Toán 10 Cánh diều hay, chi tiết khác:

Bài 2: Tập hợp. Các phép toán trên tập hợp

Bài tập cuối chương 1

Bài 1: Bất phương trình bậc nhất hai ẩn

Bài 2: Hệ bất phương trình bậc nhất hai ẩn

Bài tập cuối chương 2

Đánh giá

0

0 đánh giá