Giải SBT Toán 7 trang 89 Tập 1 Chân trời sáng tạo

394

Với lời giải SBT Toán 7 trang 89 Tập 1 chi tiết trong Bài tập cuối chương 4 sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài tập cuối chương 4

Bài 14 trang 89 Sách bài tập Toán 7 Tập 1: Cho định lí: “Nếu một đường thẳng cắt hai đường thẳng sao cho có một cặp góc so le trong bằng nhau thì các cặp góc đồng vị có được cũng bằng nhau”.

a) Hãy vẽ hình minh họa định lí trên.

b) Viết giả thiết và kết luận của định lí.

c) Hãy chứng minh định lí trên.

Lời giải

a) Hình vẽ minh họa:

Sách bài tập Toán 7 Bài tập cuối chương 4 - Chân trời sáng tạo (ảnh 1)

b) Viết giả thiết và kết luận bằng kí hiệu:

Sách bài tập Toán 7 Bài tập cuối chương 4 - Chân trời sáng tạo (ảnh 1)

c) Chứng minh định lí:

• Vì A^1 và A^3 là hai góc đối đỉnh nên A^1=A^3.

Mà A^3=B^1 (giả thiết)

Suy ra A^1=B^1.

Chứng minh tương tự ta có: A^3=B^3=B^1

• Lại có A^1 và A^2 là hai góc kề bù nên:

A^1+A^2=180°

Suy ra A^2=180°A^1      (1)

B^1 và B^2 là hai góc kề bù nên:

B^1+B^2=180°

Suy ra B^2=180°B^1      (2)

Mà A^1=B^1                      (3)

Từ (1), (2) và (3) suy ra A^2=B^2.

Chứng minh tương tự ta cũng có A^4=B^4.

Vậy định lí được chứng minh.

Xem thêm các bài giải sách bài tập Toán 7 Chân trời sáng tạo hay, chi tiết khác:

Giải SBT Toán 7 trang 87 Tập 1

Giải SBT Toán 7 trang 88 Tập 1

Đánh giá

0

0 đánh giá