Với lời giải SBT Toán 7 trang 14 Tập 2 chi tiết trong Bài 23: Đại lượng tỉ lệ nghịch sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:
Giải SBT Toán lớp 7 Bài 23:Đại lượng tỉ lệ nghịch
Bài 6.29 trang 15 SBT Toán 7 Tập 2: Một ô tô và một xe máy cùng đi từ A đến B. Biết rằng vận tốc của ô tô gấp rưỡi vận tốc của xe máy và xe máy đi hết 6 giờ. Hỏi ô tô đi hết bao nhiêu giờ?
Lời giải:
Gọi v1, v2 (km/h) lần lượt là vận tốc của ô tô và xe máy (v1, v2 > 0);
t1, t2 (giờ) là thời gian tương ứng để đi từ A đến B của ô tô và xe máy(t1, t2 > 0);.
Ta có: v1 = 1,5v2 và t2 = 6 (giờ)
Vì vận tốc và thời gian chuyển động trên cùng một quãng đường là hai đại lượng tỉ lệ nghịch nên: .
Thay v1 = 1,5v2 và t2 = 6 vào ta có:
hay
Suy ra .
Vậy thời gian để ô tô đi từ A đến B là 4 giờ.
Bài 6.30 trang 15 SBT Toán 7 Tập 2: Ba máy cày cùng loại, mỗi máy làm việc 8 giờ một ngày thì trong 7 ngày cày xong một cánh đồng. Do thời tiết nắng nóng và sắp có mưa nên yêu cầu trong 4 ngày phải hoàn thành và mỗi ngày chỉ làm được trong 6 giờ. Hỏi cần bao nhiêu máy cày để có thể hoàn thành công việc đó?
Lời giải:
Gọi x là số máy cày để hoàn thành công việc đó trong 4 ngày (x ℕ*).
Số giờ ba máy cày xong cánh đồng là: 8.7 = 56 (giờ).
Số giờ x máy cày xong cánh đồng là: 6.4 = 24 (giờ).
Trên cùng một cánh đồng, số máy cày và số giờ làm việc là hai đại lượng tỉ lệ nghịch.
Do đó, ta có .
Suy ra (máy).
Vậy cần 7 máy cày để hoàn thành công việc đó trong 4 ngày.
Bài 6.31 trang 15 SBT Toán 7 Tập 2: Ba tổ công nhân làm đường có tổng cộng 52 công nhân. Để hoàn thành cùng một công việc, tổ I cần 2 ngày, tổ II cần 3 ngày và tổ III cần 4 ngày. Hỏi mỗi tổ có bao nhiêu công nhân, biết rằng năng suất làm việc của mỗi người là như nhau?
Lời giải:
Gọi x, y, z (công nhân) lần lượt là số công nhân của ba tổ (x, y, z ℕ*).
Vì ba tổ có tổng cộng 52 công nhân nên ta có : x + y + z = 52.
Do ba tổ đều hoàn thành cùng một công việc nên thời gian hoàn thành và số công nhân là hai đại lượng tỉ lệ nghịch.
Do đó 2x = 3y = 4z.
Suy ra .
Từ tính chất của dãy tỉ số bằng nhau, ta có:
.
Suy ra x = 4.6 = 24; y = 4.4 = 16; z = 4.3 = 12.
Vậy ba tổ lần lượt có 24 công nhân, 16 công nhân và 12 công nhân.
Bài 6.32 trang 15 SBT Toán 7 Tập 2: Cho biết x và y là hai đại lượng tỉ lệ nghịch, x1, x2 là hai giá trị khác nhau của x và y1, y2 là hai giá trị tương ứng của y.
a) Tính giá trị của y1 và y2, biết x1 = 3, x2 = 2 và 2y1 + 3y2 = −26.
b) Tính x1 và y2, biết 3x1 − 2y2 = 32; x2 = −4; y1 = −10.
Lời giải:
Vì x, y là hai đại lượng tỉ lệ nghịch, nên theo tính chất của đại lượng tỉ lệ nghịch, ta có:
a) , suy ra nên .
Từ tính chất của dãy tỉ số bằng nhau, ta có:
.
Suy ra: y1 = −2 . x2 = −2.2 = −4; y2 = −2 . x1 = −2 . 3 =−6.
b) , suy ra
Từ tính chất của dãy tỉ số bằng nhau, ta có:
.
Vậy x1 = 4.x2 = 4 . (−4) = −16; y2 = 4 . y1 = 4 . (−10) = −40.
Xem thêm các bài giải sách bài tập Toán 7 Kết nối tri thức hay, chi tiết khác:
Giải SBT Toán 7 trang 14 Tập 2