Cho hai xúc xắc cân đối và đồng chất. Gieo lần lượt từng xúc xắc trong hai xúc xắc đó

121

Với giải Bài 6 trang 96 Toán 12 Tập 2 Cánh diều chi tiết trong Bài 1: Xác xuất có điều kiện giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 1: Xác xuất có điều kiện

Bài 6 trang 96 Toán 12 Tập 2: Cho hai xúc xắc cân đối và đồng chất. Gieo lần lượt từng xúc xắc trong hai xúc xắc đó. Tính xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 6, biết rằng xúc xắc thứ nhất xuất hiện mặt 4 chấm.

Lời giải:

Xét hai biến cố:

A: “Tổng số chấm xuất hiện trên hai xúc xắc bằng 6”;

B: “Xúc xắc thứ nhất xuất hiện mặt 4 chấm”.

Khi đó, xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 6, biết rằng xúc xắc thứ nhất xuất hiện mặt 4 chấm, chính là xác suất có điều kiện P(A | B).

Vì gieo lần lượt từng xúc xắc trong hai xúc xắc đó nên n(Ω) = 6 ∙ 6 = 36.

Xúc xắc thứ nhất xuất hiện mặt 4 chấm thì có 1 cách chọn, xúc xắc thứ hai có 6 cách chọn mặt xuất hiện. Do đó, P(B) = 1636=16.

Biến cố A ∩ B: “Tổng số chấm xuất hiện trên hai xúc xắc bằng 6 và xúc xắc thứ nhất xuất hiện mặt 4 chấm”. Khi đó, để có tổng số chấm bằng 6 thì xúc xắc thứ hai phải xuất hiện mặt 2 chấm. Do đó, P(A ∩ B) = 136 .

Khi đó, ta có P(A | B) = PABPB=13616=16 .

Vậy xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 6, biết rằng xúc xắc thứ nhất xuất hiện mặt 4 chấm, là 16

Đánh giá

0

0 đánh giá