Cây cà chua khi trồng có chiều cao 5 cm. Tốc độ tăng chiều cao của cây cà chua sau khi trồng

1.5 K

Với giải Bài 7 trang 16 Toán 12 Tập 2 Cánh diều chi tiết trong Bài 2: Nguyên hàm của mốt số hàm số sơ cấp giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 2: Nguyên hàm của mốt số hàm số sơ cấp

Bài 7 trang 16 Toán 12 Tập 2: Cây cà chua khi trồng có chiều cao 5 cm. Tốc độ tăng chiều cao của cây cà chua sau khi trồng được cho bởi hàm số

v(t) = – 0,1t3 + t2,

trong đó t tính theo tuần, v(t) tính bằng centimét/tuần. Gọi h(t) (tính bằng centimét) là độ cao của cây cà chua ở tuần thứ t (Nguồn: A. Bigalke et aL, Mathematik, Grundkurs ma-1, Cornelsen 2016).

a) Viết công thức xác định hàm số h(t) (t ≥ 0).

b) Giai đoạn tăng trưởng của cây cà chua đó kéo dài bao lâu?

c) Chiều cao tối đa của cây cà chua đó là bao nhiêu centimét?

d) Vào thời điểm cây cà chua đó phát triển nhanh nhất thì cây cà chua cao bao nhiêu centimét?

Lời giải:

a) Hàm số h(t) là một nguyên hàm của hàm số v(t).

Ta có vtdt=0,1t3+t2dt=0,1t3dt+t2dt=0,025t4+t33+C .

Suy ra ht=0,025t4+t33+C .

Vì cây cà chua khi trồng có chiều cao 5 cm nên h(0) = 5, suy ra C = 5.

Vậy công thức xác định hàm số h(t) là: ht=0,025t4+t33+5  t0 .

b) Xét hàm số ht=0,025t4+t33+5  t0 .

Ta có h'(t) = v(t) = – 0,1t3 + t2; h'(t) = 0 khi t = 0 hoặc t = 10.

Bảng biến thiên của hàm số h(t) trên [0; + ∞) như sau:

Bài 7 trang 16 Toán 12 Cánh diều Tập 2 | Giải Toán 12

Từ bảng biến thiên ta thấy giai đoạn tăng trưởng của cây cà chua đó kéo dài 10 tuần.

c) Từ bảng biến thiên ở câu b, ta thấy chiều cao tối đa của cây cà chua đó là 2653 cm.

d) Xét hàm tốc độ tăng chiều cao của cây cà chua: v(t) = – 0,1t3 + t2 (t ≥ 0).

Ta có v'(t) = – 0,3t2 + 2t; v'(t) = 0 khi t = 0 hoặc t = 203 .

Bảng biến thiên của hàm số v(t) trên [0; + ∞) như sau:

Bài 7 trang 16 Toán 12 Cánh diều Tập 2 | Giải Toán 12

Từ bảng biến thiên ta suy ra vào thời điểm cây cà chua đó phát triển nhanh nhất thì cây cà chua cao 40027 cm.

Đánh giá

0

0 đánh giá