Cho tam giác ABC nội tiếp đường tròn (O). Biết rằng BOC = 120° và OCA = 20°

275

Với giải Bài 9.13 trang 79 Toán 9 Tập 2 Kết nối tri thức chi tiết trong Luyện tập chung trang 78 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Luyện tập chung trang 78

Bài 9.13 trang 79 Toán 9 Tập 2: Cho tam giác ABC nội tiếp đường tròn (O). Biết rằng BOC^=120° OCA^=20°. Tính số đo các góc của tam giác ABC.

Lời giải:

Bài 9.13 trang 79 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Vì tam giác ABC nội tiếp đường tròn (O) nên OA = OB = OC.

Xét ∆OAC có OA = OC nên ∆OAC cân tại O, suy ra OAC^=OCA^=20°.

Lại có OAC^+OCA^+AOC^=180° (tổng các góc của một tam giác)

Suy ra AOC^=180°OAC^OCA^=180°20°20°=140°.

Xét đường tròn (O) có:

 ABC^,AOC^ lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung AC nên:

ABC^=12AOC^=12140°=70°.

 BAC^,BOC^ lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung BC nên:

BAC^=12BOC^=12120°=60°.

Xét ∆ABC có: BAC^+ABC^+ACB^=180° (tổng các góc của một tam giác)

Suy ra ACB^=180°BAC^ABC^=180°60°70°=50°.

Vậy BAC^=60°;ABC^=70°;ACB^=50°.

Đánh giá

0

0 đánh giá