Một hộp chứa 5 tấm thẻ cùng loại được đánh số từ 1 đến 5. Thẻ số 5 có thể đổi được 10 điểm còn mỗi thẻ

142

Với giải Bài 5 trang 72 Chuyên đề Toán 12 Chân trời sáng tạo chi tiết trong Bài tập cuối chuyên đề 3 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 12. Mời các bạn đón xem:

Giải Chuyên đề Toán 12 Bài tập cuối chuyên đề 3

Bài 5 trang 72 Chuyên đề Toán 12: Một hộp chứa 5 tấm thẻ cùng loại được đánh số từ 1 đến 5. Thẻ số 5 có thể đổi được 10 điểm còn mỗi thẻ ghi số chẵn có thể đổi được 5 điểm. Các thẻ còn lại không đổi được điểm. Rút ra ngẫu nhiên đồng thời 2 thẻ từ hộp và đổi các thẻ này lấy điểm. Gọi X là số điểm đổi được. Hãy lập bảng phân bố xác suất, tính kì vọng và phương sai của X.

Lời giải:

Tập các giá trị của X là {0; 5; 10; 15}.

Tổng số kết quả có thể xảy ra khi lấy ngẫu nhiên đồng thời 2 thẻ từ hộp là: nΩ=C52=10.

Biến cố “X bằng 0” xảy ra khi cả hai thẻ không đổi được điểm (thẻ đánh số 1 hoặc số 3) nên số các kết quả thuận lợi cho biến cố “X bằng 0” là 1.

Xác suất của biến cố “X bằng 0” là: PX=0=110=0,1.

Tương tự, ta có: PX=5=C21C2110=410=0,4; PX=10=C22+C21110=310=0,3; PX=15=C21110=210=0,2.

Ta có bảng phân bố xác suất của X là:

X

0

5

10

15

P

0,1

0,4

0,3

0,2

Kì vọng của X là:

E(X) = 0 . 0,1 + 5 . 0,4 + 10 . 0,3 + 15 . 0,2 = 8.

Phương sai của X là:

V(X) = 02 . 0,1 + 52 . 0,4 + 102 . 0,3 + 152 . 0,2 – 82 = 21.

Đánh giá

0

0 đánh giá