Bài 3 trang 83 Toán 12 Tập 1 Chân trời sáng tạo | Giải bài tập Toán 12

185

Với giải Bài 3 trang 83 Toán 12 Tập 1 Chân trời sáng tạo chi tiết trong Bài 2: Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 2: Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm

Bài 3 trang 83 Toán 12 Tập 1: Tốc độ của 20 xe hơi khi đi qua một trạm kiểm tra tốc độ (đơn vị: km/h) được thống kê lại như sau:

42 43,4 43,4 46,5 46,7 46,8 47,5 47,7 48,1 48,4

50,8 52,1 52,7 53,9 54,8 55,6 57,5 59,6 60,3 61,1

a) Hãy tính khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn của mẫu số liệu trên.

b) Hãy lập bảng tần số ghép nhóm với nhóm đầu tiên là [42; 46) và độ dài mỗi nhóm bằng 4.

c) Hãy tính khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn của mẫu số liệu ghép nhóm.

Lời giải:

a) Mẫu số liệu đã cho đã được xếp theo thứ tự không giảm.

Khoảng biến thiên của mẫu số liệu là:

R = 61,1 – 42 = 19,1 (km/h).

Cỡ mẫu n = 20.

Tứ phân vị thứ nhất là trung vị của mẫu số liệu:

42 43,4 43,4 46,5 46,7 46,8 47,5 47,7 48,1 48,4

Do đó, Q1=46,7+46,82=46,75 .

Tứ phân vị thứ ba là trung vị của mẫu số liệu:

50,8 52,1 52,7 53,9 54,8 55,6 57,5 59,6 60,3 61,1

Do đó, Q3=54,8+55,62=55,2.

Khoảng tứ phân vị của mẫu số liệu là:

Q = Q3 – Q1 = 55,2 – 46,75 = 8,45.

Số trung bình của mẫu số liệu là:

x¯=42+43,4+43,4+46,5+...+60,3+61,120=50,945.

Phương sai của mẫu số liệu là:

S2 = 120 [422 + (43,4)2 + (43,4)2 + … + (60,3)2 + (61,1)2] – (50,945)2 ≈ 32,2.

Độ lệch chuẩn của mẫu số liệu là:

S=S232,25,675.

b) Ta lập được bảng tần số ghép nhóm như sau:

Tốc độ (km/h)

[42; 46)

[46; 50)

[50; 54)

[54; 58)

[58; 62)

Số xe

3

7

4

3

3

c) Khoảng biến thiên của mẫu số liệu ghép nhóm là:

R' =62 – 42 = 20 (km/h).

Gọi x1; x2; …; x20 là mẫu số liệu gốc về tốc độ của 20 xe hơi đi qua một trạm kiểm tra tốc độ được xếp theo thứ tự không giảm.

Ta có x1; x2; x3 ∈ [42; 46), x4; …; x10 ∈ [46; 50), x11; …; x14 ∈ [50; 54),

   x15; …; x17 ∈ [54; 58), x18; x19; x20 ∈ [58; 62).

Tứ phân vị thứ nhất của mẫu số liệu gốc là 12x5+x6 ∈ [46; 50).

Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

Q'1=46+204375046=3307.

Tứ phân vị thứ ba của mẫu số liệu gốc là 12x15+x16 ∈ [54; 58).

Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

Q'3=54+32043+7+435854=1663.

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

'Q = Q'3 – Q'1 = 16633307=17221 ≈ 8,19.

Từ bảng tần số ghép nhóm, ta có bảng sau:

Tốc độ (km/h)

[42; 46)

[46; 50)

[50; 54)

[54; 58)

[58; 62)

Giá trị đại diện

44

48

52

56

60

Số xe

3

7

4

3

3

Số trung bình của mẫu số liệu ghép nhóm là:

x¯'=344+748+452+356+36020=51,2.

Phương sai của mẫu số liệu ghép nhóm là:

S'2 = 120 (3 ∙ 442 + 7 ∙ 482 + 4 ∙ 522 + 3 ∙ 562 + 3 ∙ 602) – (51,2)2 = 26,56.

Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

S'=S'2=26,56=216655,154.

Đánh giá

0

0 đánh giá