Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 12 Bài 1: Khoảng biến thiên và khoảng tử phân vị của mẫu số liệu ghép nhóm chi tiết sách Toán 12 Tập 1 Chân trời sáng tạo giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài 1: Khoảng biến thiên và khoảng tử phân vị của mẫu số liệu ghép nhóm
Ai là người có thời gian tập đều hơn?
Lời giải:
Sau bài học này, ta giải quyết được bài toán trên như sau:
Từ biểu đồ đã cho, ta có bảng thống kê sau:
Thời gian (phút) |
[15; 20) |
[20; 25) |
[25; 30) |
[30; 35) |
[35; 40) |
Số ngày tập của bác Bình |
5 |
12 |
8 |
3 |
2 |
Số ngày tập của bác An |
0 |
25 |
5 |
0 |
0 |
• Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác Bình là 40 – 15 = 25 (phút).
Tuy nhiên, trong mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác An, khoảng đầu tiên chứa dữ liệu là [20; 25) và khoảng cuối cùng chứa dữ liệu là [25; 30).
Do đó, khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác An là 30 – 20 = 10 (phút).
Nếu căn cứ theo khoảng biến thiên thì bác Bình có thời gian tập thể dục phân tán hơn bác An, vậy bác An là người có thời gian tập đều hơn.
• Cỡ mẫu n = 30.
- Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình:
Gọi x1; x2; …; x30 là mẫu số liệu gốc về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình được xếp theo thứ tự không giảm.
Ta có x1; x2; …; x5 ∈ [15; 20), x6; x7; …; x17 ∈ [20; 25),
x18; x19; …; x25 ∈ [25; 30), x26; …; x28 ∈ [30; 35), x29; x30 ∈ [35; 40).
Tứ phân vị thứ nhất Q1 của mẫu số liệu gốc là x8 ∈ [20; 25). Do đó, tứ phân thứ nhất của mẫu số liệu ghép nhóm là .
Tứ phân vị thứ ba Q3 của mẫu số liệu gốc là x23 ∈ [25; 30). Do đó, tứ phân thứ ba của mẫu số liệu ghép nhóm là .
Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình là ∆Q = Q3 – Q1 = .
- Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác An:
Gọi y1; y2; …; y30 là mẫu số liệu gốc về thời gian tập thể dục buổi sáng mỗi ngày của bác An được xếp theo thứ tự không giảm.
Ta có y1; y2; …; y25 ∈ [20; 25), y26; …; y29; y30 ∈ [25; 30).
Tứ phân vị thứ nhất Q'1 của mẫu số liệu gốc là y8 ∈ [20; 25). Do đó, tứ phân thứ nhất của mẫu số liệu ghép nhóm là .
Tứ phân vị thứ ba Q'3 của mẫu số liệu gốc là y23 ∈ [20; 25). Do đó, tứ phân thứ ba của mẫu số liệu ghép nhóm là .
Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác An là ∆'Q = Q'3 – Q'1 = .
Vì ∆Q = ≈ 7,4 > ∆'Q = 3 nên khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình lớn hơn bác An.
Vậy nếu căn cứ theo khoảng tứ phân vị thì bác An là người có thời gian tập đều hơn.
1. Khoảng biến thiên
Cân nặng (g) |
[250; 290) |
[290; 330) |
[330; 370) |
[370; 410) |
[410; 450) |
Số quả xoài |
3 |
13 |
18 |
11 |
5 |
Có ý kiến cho rằng: “Trong 50 quả xoài trên, hiệu số cân nặng của hai quả bất kì không vượt quá 200 g”. Ý kiến đó đúng hay sai? Giải thích.
Lời giải:
Ý kiến nêu trên là đúng.
Giải thích: Quan sát bảng thống kê đã cho, ta thấy cân nặng lớn nhất quả xoài có thể đạt được là dưới 450 g, cân nặng nhỏ nhất quả xoài có thể đạt được là 250 g. Mà ta có 450 – 350 = 200. Do đó, hai quả bất kì nào cũng có hiệu số cân nặng không vượt quá 200 g.
Chiều cao (cm) |
[155; 160) |
[160; 165) |
[165; 170) |
[170; 175) |
[175; 180) |
[180; 185) |
Số học sinh nữ lớp 12C |
2 |
7 |
12 |
3 |
0 |
1 |
Số học sinh nữ lớp 12D |
5 |
9 |
8 |
2 |
1 |
0 |
Sử dụng khoảng biến thiên, hãy cho biết chiều cao của học sinh nữ lớp nào có độ phân tán lớn hơn.
Lời giải:
Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12C là: 185 – 155 = 30 (cm).
Trong mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12D, khoảng đầu tiên chứa dữ liệu là [155; 160) và khoảng cuối cùng chứa dữ liệu là [175; 180).
Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12D là: 180 – 155 = 25 (cm).
Vậy nếu căn cứ theo khoảng biến thiên thì chiều cao của học sinh nữ lớp 12C có độ phân tán lớn hơn.
2. Khoảng tứ phân vị
Tổng thu nhập (triệu đồng) |
[200; 250) |
[250; 300) |
[300; 350) |
[350; 400) |
[400; 450) |
Số hộ gia đình |
24 |
62 |
34 |
21 |
9 |
a) Hãy tìm các tứ phân vị Q1 và Q3.
b) Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với mức thu nhập của tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?
Lời giải:
a) Số hộ gia đình được khảo sát (cỡ mẫu) là n = 24 + 62 + 34 + 21 + 9 = 150.
Gọi x1; x2; …; x150 là tổng thu nhập trong năm 2022 của 150 hộ gia đình được xếp theo thứ tự không giảm.
Ta có x1; x2; …; x24 ∈ [200; 250), x25; x26; …; x86 ∈ [250; 300),
x87; x88; …; x120 ∈ [300; 350), x121; …; x141 ∈ [350; 400), x142; …; x150 ∈ [400; 450).
Do đó, đối với dãy số liệu x1; x2; …; x150 thì
• Tứ phân vị thứ nhất Q1 là x38 ∈ [250; 300). Do đó, tứ phân thứ nhất của mẫu số liệu ghép nhóm là Q1 = 250 + .(300-250) = .
• Tứ phân vị thứ ba Q3 là x113 ∈ [300; 350). Do đó, tứ phân thứ ba của mẫu số liệu ghép nhóm là Q3 = 300 + . (350-300) = .
b) Doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng [Q1; Q3) = ≈ [260,89; 338,97) (triệu đồng).
Lời giải:
Ta có bảng thống kê sau:
Thời gian (phút) |
[15; 20) |
[20; 25) |
[25; 30) |
[30; 35) |
[35; 40) |
Số ngày tập của bác Bình |
5 |
12 |
8 |
3 |
2 |
Số ngày tập của bác An |
0 |
25 |
5 |
0 |
0 |
Cỡ mẫu n = 30.
• Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình:
Gọi x1; x2; …; x30 là mẫu số liệu gốc về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình được xếp theo thứ tự không giảm.
Ta có x1; x2; …; x5 ∈ [15; 20), x6; x7; …; x17 ∈ [20; 25),
x18; x19; …; x25 ∈ [25; 30), x26; …; x28 ∈ [30; 35), x29; x30 ∈ [35; 40).
Tứ phân vị thứ nhất Q1 của mẫu số liệu gốc là x8 ∈ [20; 25). Do đó, tứ phân thứ nhất của mẫu số liệu ghép nhóm là Q1 = 20 + .(25-20) = .
Tứ phân vị thứ ba Q3 của mẫu số liệu gốc là x23 ∈ [25; 30). Do đó, tứ phân thứ ba của mẫu số liệu ghép nhóm là Q3 = 25 + . (30-25) = .
Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình là ∆Q = Q3 – Q1 = .
• Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác An:
Gọi y1; y2; …; y30 là mẫu số liệu gốc về thời gian tập thể dục buổi sáng mỗi ngày của bác An được xếp theo thứ tự không giảm.
Ta có y1; y2; …; y25 ∈ [20; 25), y26; …; y29; y30 ∈ [25; 30).
Tứ phân vị thứ nhất Q'1 của mẫu số liệu gốc là y8 ∈ [20; 25). Do đó, tứ phân thứ nhất của mẫu số liệu ghép nhóm là .
Tứ phân vị thứ ba Q'3 của mẫu số liệu gốc là y23 ∈ [20; 25). Do đó, tứ phân thứ ba của mẫu số liệu ghép nhóm là .
Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác An là ∆'Q = Q'3 – Q'1 = .
• Vì ∆Q = ≈ 7,4 > ∆'Q = 3 nên khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình lớn hơn bác An.
b) Hãy so sánh mức độ phân tán của hai mẫu số liệu chiều cao của các học sinh nữ lớp 12C và 12D ở Thực hành 1.
Lời giải:
a) Khoảng biến thiên của mẫu số liệu ghép nhóm ban đầu là:
R = 33 – 15 = 18 (phút).
Từ Ví dụ 4, ta có khoảng tứ phân vị của mẫu số liệu ghép nhóm ban đầu là .
Giá trị x trong mẫu số liệu là giá trị ngoại lệ nếu x > Q3 + 1,5∆Q hoặc x < Q1 + 1,5∆Q.
Hay x > hoặc x < .
Do đó, chỉ có đúng 1 lần ông Thắng đi hết 32 phút là giá trị ngoại lệ của mẫu số liệu ghép nhóm.
Sau khi bỏ giá trị ngoại lệ, ta có bảng thống kê sau:
Thời gian (phút) |
[15; 18) |
[18; 21) |
[21; 24) |
[24; 27) |
[27; 30) |
Số lần |
22 |
38 |
27 |
8 |
4 |
Khoảng biến thiên của mẫu số liệu ghép nhóm sau khi loại bỏ giá trị ngoại lệ là:
R' = 30 – 15 = 15 (phút).
Cỡ mẫu n' = 99.
Gọi y1; y2; y3; …; y99 là mẫu số liệu gốc gồm thời gian 99 lần đi xe buýt của ông Thắng được xếp theo thứ tự không giảm.
Ta có: y1; …; y22 ∈ [15; 18); y23; …; y60 ∈ [18; 21); y61; …; y87 ∈ [21; 24);
y88; …; y95 ∈ [24; 27); y95; …; y99 ∈ [27; 30).
Tứ phân vị thứ nhất của mẫu số liệu gốc là y25 ∈ [18; 21). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm sau khi loại bỏ giá trị ngoại lệ là:
.
Tứ phân vị thứ ba của mẫu số liệu gốc là y75 ∈ [21; 24). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm sau khi loại bỏ giá trị ngoại lệ là:
.
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm sau khi loại bỏ giá trị ngoại lệ là:
.
Nhận xét: Sau khi loại bỏ giá trị ngoại lệ, khoảng biến thiên giảm mạnh, còn khoảng tứ phân vị mới không bị ảnh hưởng nhiều.
b)
• Lớp 12C:
Cỡ mẫu n = 2 + 7 + 12 + 3 + 0 + 1 = 25.
Gọi x1; x2; …; x25 là mẫu số liệu gốc về chiều cao của 25 học sinh nữ lớp 12C được xếp theo thứ tự không giảm.
Ta có x1; x2 ∈ [155; 160), x3; x4; …; x9 ∈ [160; 165),
x10; x11; …; x21 ∈ [165; 170), x22; …; x24 ∈ [170; 175), x25 ∈ [180; 185).
Tứ phân vị thứ nhất của mẫu số liệu gốc là (x6 + x7) ∈ [160; 165). Do đó, tứ phân thứ nhất của mẫu số liệu ghép nhóm là:
.
Tứ phân vị thứ ba của mẫu số liệu gốc là (x19 + x20) ∈ [165; 170). Do đó, tứ phân thứ ba của mẫu số liệu ghép nhóm là:
.
Khoảng tứ phân vị của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12C là:
∆Q = Q3 – Q1 = ≈ 6,03.
• Lớp 12D:
Cỡ mẫu n' = 5 + 9 + 8 + 2 + 1 = 25.
Gọi y1; y2; …; y25 là mẫu số liệu gốc về chiều cao của 25 học sinh nữ lớp 12D được xếp theo thứ tự không giảm.
Ta có y1; y2; …; y5 ∈ [155; 160), y6; y7; …; y14 ∈ [160; 165),
y15; y16; …; y22 ∈ [165; 170), y23; y24 ∈ [170; 175), y25 ∈ [175; 180).
Tứ phân vị thứ nhất của mẫu số liệu gốc là (y6 + y7) ∈ [160; 165). Do đó, tứ phân thứ nhất của mẫu số liệu ghép nhóm là:
.
Tứ phân vị thứ ba của mẫu số liệu gốc là (y19 + y20) ∈ [165; 170). Do đó, tứ phân thứ ba của mẫu số liệu ghép nhóm là:
.
Khoảng tứ phân vị của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp 12D là:
∆'Q = Q'3 – Q'1 = ≈ 7,27.
Vì ∆'Q ≈ 7,27 > ∆Q ≈ 6,03 nên chiều cao của các bạn học sinh nữ lớp 12D có độ phân tán lớn hơn lớp 12C.
Tuổi kết hôn |
[19; 22) |
[22; 25) |
[25; 28) |
[28; 31) |
[31; 34) |
Số phụ nữ khu vực A |
10 |
27 |
31 |
25 |
7 |
Số phụ nữ khu vực B |
47 |
40 |
11 |
2 |
0 |
a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của từng mẫu số liệu ghép nhóm ứng với mỗi khu vực A và B.
b) Nếu so sánh theo khoảng tứ phân vị thì phụ nữ ở khu vực nào có độ tuổi kết hôn đồng đều hơn?
Lời giải:
a)
• Khu vực A:
Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực A là:
R = 34 – 19 = 15.
Cỡ mẫu n = 10 + 27 + 31 + 25 + 7 = 100.
Gọi x1; x2; …; x100 là mẫu số liệu gốc về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình ở khu vực A được xếp theo thứ tự không giảm.
Ta có x1; x2; …; x10 ∈ [19; 22), x11; x12; …; x37 ∈ [22; 25),
x38; x39; …; x68 ∈ [25; 28), x69; …; x93 ∈ [28; 31), x94; …; x100 ∈ [31; 34).
Tứ phân vị thứ nhất của mẫu số liệu gốc là (x25 + x26) ∈ [22; 25). Do đó, tứ phân thứ nhất của mẫu số liệu ghép nhóm là:
.
Tứ phân vị thứ ba của mẫu số liệu gốc là (x75 + x76) ∈ [28; 31). Do đó, tứ phân thứ ba của mẫu số liệu ghép nhóm là:
.
Khoảng tứ phân vị của mẫu số liệu ghép nhóm về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình ở khu vực A là:
∆Q = Q3 – Q1 = ≈ 5,17.
• Khu vực B:
Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực B là:
R' = 31 – 19 = 12.
Cỡ mẫu n' = 47 + 40 + 11 + 2 = 100.
Gọi y1; y2; …; y100 là mẫu số liệu gốc về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình ở khu vực B được xếp theo thứ tự không giảm.
Ta có y1; y2; …; y47 ∈ [19; 22), y48; y49; …; y87 ∈ [22; 25),
y88; y89; …; y98 ∈ [25; 28), y99; y100 ∈ [28; 31).
Tứ phân vị thứ nhất của mẫu số liệu gốc là (y25 + y26) ∈ [19; 22). Do đó, tứ phân thứ nhất của mẫu số liệu ghép nhóm là:
.
Tứ phân vị thứ ba của mẫu số liệu gốc là (y75 + y76) ∈ [22; 25). Do đó, tứ phân thứ ba của mẫu số liệu ghép nhóm là:
.
Khoảng tứ phân vị của mẫu số liệu ghép nhóm về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình ở khu vực B là:
∆'Q = Q'3 – Q'1 = ≈ 3,5.
Vì ∆'Q < ∆Q nên phụ nữ ở khu vực B có độ tuổi kết hôn đồng đều hơn.
Bài tập
341,4 |
187,1 |
242,2 |
522,9 |
251,4 |
432,2 |
200,7 |
388,6 |
258,4 |
288,5 |
298,1 |
413,5 |
413,5 |
332 |
421 |
475 |
400 |
305 |
520 |
147 |
(Nguồn: Tổng cục Thống kê)
a) Hãy tìm khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu trên.
b) Hãy chia mẫu số liệu trên thành 4 nhóm với nhóm đầu tiên là [140; 240) và lập bảng tần số ghép nhóm.
c) Hãy tìm khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm và so sánh với kết quả tương ứng thu được ở câu a).
Lời giải:
a) Sắp xếp lại mẫu số liệu trên theo thứ tự không giảm, ta được:
147 187,1 200,7 242,2 251,4 258,4 288,5
298,1 305 332 341,4 388,6 400 413,5
413,5 421 432,2 475 520 522,9
Khoảng biến thiên của mẫu số liệu trên là:
R = 522,9 – 147 = 375,9 (mm).
Cỡ mẫu n = 20.
Tứ phân vị thứ nhất là trung vị của mẫu số liệu:
147; 187,1; 200,7; 242,2; 251,4; 258,4 ; 288,5; 298,1; 305 ; 332.
Do đó, .
Tứ phân vị thứ ba là trung vị của mẫu số liệu:
341,4; 388,6 ; 400; 413,5; 413,5 ; 421; 432,2; 475; 520; 522,9.
Do đó, .
Khoảng tứ phân vị của mẫu số liệu đã cho là:
∆Q = Q3 – Q1 = 417,25 – 254,9 = 162,35.
b) Nhóm đầu tiên là [140; 240), ta chọn 3 nhóm còn lại là
[240; 340), [340; 440), [440; 540).
Từ bảng thống kê ban đầu, ta lập được bảng tần số ghép nhóm như sau:
Lượng mưa (mm) |
[140; 240) |
[240; 340) |
[340; 440) |
[440; 540) |
Số tháng |
3 |
7 |
7 |
3 |
c) Cỡ mẫu n = 20.
Khoảng biến thiên của mẫu số liệu ghép nhóm là
R' = 540 – 140 = 400 (mm).
Gọi x1; x2; …; x20 là mẫu số liệu gốc về lượng mưa đo được vào tháng 7 từ năm 2002 đến 2021 tại một trạm quan trắc đặt ở Cà Mau được xếp theo thứ tự không giảm.
Ta có x1; x2; x3 ∈ [140; 240), x4; …; x10 ∈ [240; 340),
x11; …; x17 ∈ [340; 440), x18; x19; x20 ∈ [440; 540).
Tứ phân vị thứ nhất của mẫu số liệu gốc là ∈ [240; 340).
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
.
Tứ phân vị thứ ba của mẫu số liệu gốc là ∈ [340; 440).
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
.
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
∆'Q = Q'3 – Q'1 = ≈ 142,86.
Ta thấy khoảng biến thiên của mẫu số liệu ghép nhóm lớn hơn mẫu số liệu đã cho; khoảng tứ phân vị của mẫu số liệu ghép nhóm nhỏ hơn mẫu số liệu đã cho.
Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi biểu đồ trên.
Chiều cao (m) |
[8,4; 8,6) |
[8,6; 8,8) |
[8,8; 9,0) |
[9,0; 9,2) |
[9,2; 9,4) |
Số cây |
5 |
12 |
25 |
44 |
14 |
a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.
b) Trong 100 cây keo trên có 1 cây cao 8,4 m. Hỏi chiều cao của cây keo này có phải là giá trị ngoại lệ không?
Lời giải:
a) Khoảng biến thiên của mẫu số liệu ghép nhóm là:
R = 9,4 – 8,4 = 1 (m).
Cỡ mẫu n = 100.
Gọi x1; x2; …; x100 là mẫu số liệu gốc về chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được xếp theo thứ tự không giảm.
Ta có x1; …; x5 ∈ [8,4; 8,6), x6; …; x17 ∈ [8,6; 8,8), x18; …; x42 ∈ [8,8; 9,0),
x43; …; x86 ∈ [9,0; 9,2), x87; …; x100 ∈ [9,2; 9,4).
Tứ phân vị thứ nhất của mẫu số liệu gốc là ∈ [8,8; 9,0).
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
.
Tứ phân vị thứ ba của mẫu số liệu gốc là ∈ [9,0; 9,2).
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
.
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
∆Q = Q3 – Q1 = 9,15 – 8,864 = 0,286.
b) Trong 100 cây keo trên có 1 cây cao 8,4 m thuộc nhóm [8,4; 8,6).
Vì Q1 – 1,5∆Q = 8,864 – 1,5 ∙ 0,286 = 8,435 > 8,4 nên chiều cao của cây keo cao 8,4 m là giá trị ngoại lệ của mẫu số liệu ghép nhóm.
Lời giải:
Từ biểu đồ đã cho, ta có có bảng thống kê sau:
Số lượt đặt bàn |
[1; 6) |
[6; 11) |
[11; 16) |
[16; 21) |
[21; 26) |
Số ngày |
14 |
30 |
25 |
18 |
5 |
Cỡ mẫu n = 14 + 30 + 25 + 18 + 5 = 92.
Gọi x1; x2; …; x92 là mẫu số liệu gốc về số lượt khách đặt bàn qua hình thức trực tuyến mỗi ngày trong quý III năm 2022 của một nhà hàng được xếp theo thứ tự không giảm.
Ta có x1; …; x14 ∈ [1; 6), x15; …; x44 ∈ [6; 11), x45; …; x69 ∈ [11; 16),
x70; …; x87 ∈ [16; 21), x88; …; x92 ∈ [21; 26).
Tứ phân vị thứ nhất của mẫu số liệu gốc là ∈ [6; 11).
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
= 7,5.
Tứ phân vị thứ ba của mẫu số liệu gốc là .
Mà x69 ∈ [11; 16) và x70 ∈ [16; 21)
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là Q3 = 16.
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
∆Q = Q3 – Q1 = 16 – 7,5 = 8,5.
Chiều cao (m) |
[8,4; 8,6) |
[8,6; 8,8) |
[8,8; 9,0) |
[9,0; 9,2) |
[9,2; 9,4) |
Số cây |
5 |
12 |
25 |
44 |
14 |
a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.
b) Trong 100 cây keo trên có 1 cây cao 8,4 m. Hỏi chiều cao của cây keo này có phải là giá trị ngoại lệ không?
Lời giải:
a) Khoảng biến thiên của mẫu số liệu ghép nhóm là:
R = 9,4 – 8,4 = 1 (m).
Cỡ mẫu n = 100.
Gọi x1; x2; …; x100 là mẫu số liệu gốc về chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được xếp theo thứ tự không giảm.
Ta có x1; …; x5 ∈ [8,4; 8,6), x6; …; x17 ∈ [8,6; 8,8), x18; …; x42 ∈ [8,8; 9,0),
x43; …; x86 ∈ [9,0; 9,2), x87; …; x100 ∈ [9,2; 9,4).
Tứ phân vị thứ nhất của mẫu số liệu gốc là ∈ [8,8; 9,0).
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
.
Tứ phân vị thứ ba của mẫu số liệu gốc là ∈ [9,0; 9,2).
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
.
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
∆Q = Q3 – Q1 = 9,15 – 8,864 = 0,286.
b) Trong 100 cây keo trên có 1 cây cao 8,4 m thuộc nhóm [8,4; 8,6).
Vì Q1 – 1,5∆Q = 8,864 – 1,5 ∙ 0,286 = 8,435 > 8,4 nên chiều cao của cây keo cao 8,4 m là giá trị ngoại lệ của mẫu số liệu ghép nhóm.
a) Hãy tính các khoảng tứ phân vị của tuổi nam giới và nữ giới trong mỗi bảng số liệu ghép nhóm trên.
b) Hãy cho biết trong câu lạc bộ trên, nam giới hay nữ giới có tuổi đồng đều hơn.
Lời giải:
a)
• Nam giới:
Cỡ mẫu n = 4 + 7 + 4 + 6 + 15 + 12 + 2 = 50.
Gọi x1; x2; …; x50 là mẫu số liệu gốc về tuổi của nam giới đang sinh hoạt trong câu lạc bộ dưỡng sinh được xếp theo thứ tự không giảm.
Ta có x1; …; x4 ∈ [50; 55), x5; …; x11 ∈ [55; 60), x12; …; x15 ∈ [60; 65),
x16; …; x21 ∈ [65; 70), x22; …; x36 ∈ [70; 75), x37; …; x48 ∈ [75; 80),
x49; x50 ∈ [80; 85).
Tứ phân vị thứ nhất của mẫu số liệu gốc là x13 ∈ [60; 65).
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
.
Tứ phân vị thứ ba của mẫu số liệu gốc là x38 ∈ [75; 80).
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
.
Khoảng tứ phân vị của mẫu số liệu ghép nhóm về tuổi của nam giới đang sinh hoạt trong câu lạc bộ dưỡng sinh là:
∆Q = Q3 – Q1 = 75,625 – 61,875 = 13,75.
• Nữ giới:
Cỡ mẫu n' = 3 + 4 + 5 + 3 + 7 + 14 + 13 + 1 = 50.
Gọi y1; y2; …; y50 là mẫu số liệu gốc về tuổi của nữ giới đang sinh hoạt trong câu lạc bộ dưỡng sinh được xếp theo thứ tự không giảm.
Ta có y1; …; y4 ∈ [50; 55), y4; …; y7 ∈ [55; 60), y8; …; y12 ∈ [60; 65),
y13; …; x15 ∈ [65; 70), y16; …; y22 ∈ [70; 75), y23; …; y36 ∈ [75; 80),
y37; …; y49 ∈ [80; 85), y50 ∈ [85; 90).
Tứ phân vị thứ nhất của mẫu số liệu gốc là y13 ∈ [65; 70).
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
.
Tứ phân vị thứ ba của mẫu số liệu gốc là y38 ∈ [80; 85).
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
.
Khoảng tứ phân vị của mẫu số liệu ghép nhóm về tuổi của nữ giới đang sinh hoạt trong câu lạc bộ dưỡng sinh là:
∆'Q = Q'3 – Q'1 = ≈ 14,74.
b) Ta có ∆'Q ≈ 14,74 > ∆Q = 13,75 nên trong câu lạc bộ dưỡng sinh, nam giới có tuổi đồng đều hơn.
Xem thêm các bài giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Bài 1. Khoảng biến thiên và khoảng tử phân vị của mẫu số liệu ghép nhóm
Bài 2. Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm
Bài 1. Vẽ đồ thị hàm số bằng phần mềm Geogebra
Bài 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số bằng máy tính cầm tay
Lý thuyết Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm
1. Khoảng biến thiên
a) Định nghĩa
Khoảng biến thiên, kí hiệu R, của mẫu số liệu ghép nhóm là hiệu số giữa đầu mút phải của nhóm cuối cùng và đầu mút trái của nhóm đầu tiên có chứa dữ liệu của mẫu số liệu.
|
b) Ý nghĩa
- Khoảng biến thiên của mẫu số liệu ghép nhóm xấp xỉ cho khoảng biến thiên của mẫu số liệu gốc và có thể dùng để đo mức độ phân tán của mẫu số liệu
- Khoảng biến thiên chưa phản ánh đầy đủ mức độ phân tán của phần lớn các số liệu. Hơn nữa giá trị của R thường tăng vọt khi xuất hiện giá trị ngoại lệ trong mẫu số liệu. Do đó, để phản ánh mức độ phân tán của số liệu, người ta còn dùng các số đặc trưng khác
2. Khoảng tứ phân vị
a) Định nghĩa
Khoảng tứ phân vị của mẫu số liệu ghép nhóm, kí hiệu , là hiệu giữa tứ phân vị thứ ba và tứ phân vị thứ nhất của mẫu số liệu ghép nhóm đó, tức là: |
b) Ý nghĩa
b) Ý nghĩa
- Khoảng tứ phân vị của mẫu số liệu ghép nhóm xấp xỉ khoảng tứ phân vị của mẫu số liệu gốc và là một đại lượng cho biết mức độ phân tán của nửa giữa mẫu số liệu.
- Khoảng tứ phân vị của mẫu số liệu ghép nhóm càng nhỏ thì dữ liệu càng tập trung xung quanh trung vị.
- Khoảng tứ phân vị được dùng để xác định giá trị ngoại lệ trong mẫu số liệu. Giá trị x trong mẫu số liệu là giá trị ngoại lệ nếu hoặc .
- Khoảng tứ phân vị của mẫu số liệu ghép nhóm không bị ảnh hưởng nhiều bởi các giá trị ngoại lệ trong mẫu số liệu.