Bài 4 trang 74 Toán 12 Tập 1 Chân trời sáng tạo | Giải bài tập Toán 12

154

Với giải Bài 4 trang 74 Toán 12 Tập 1 Chân trời sáng tạo chi tiết trong Bài 1: Khoảng biến thiên và khoảng tử phân vị của mẫu số liệu ghép nhóm giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 1: Khoảng biến thiên và khoảng tử phân vị của mẫu số liệu ghép nhóm

Bài 4 trang 74 Toán 12 Tập 1: Kết quả đo chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được cho ở bảng sau:

Chiều cao (m)

[8,4; 8,6)

[8,6; 8,8)

[8,8; 9,0)

[9,0; 9,2)

[9,2; 9,4)

Số cây

5

12

25

44

14

a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.

b) Trong 100 cây keo trên có 1 cây cao 8,4 m. Hỏi chiều cao của cây keo này có phải là giá trị ngoại lệ không?

Lời giải:

a) Khoảng biến thiên của mẫu số liệu ghép nhóm là:

R = 9,4 – 8,4 = 1 (m).

Cỡ mẫu n = 100.

Gọi x1; x2; …; x100 là mẫu số liệu gốc về chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được xếp theo thứ tự không giảm.

Ta có x1; …; x5 ∈ [8,4; 8,6), x6; …; x17 ∈ [8,6; 8,8), x18­; …; x42 ∈ [8,8; 9,0),

   x43; …; x86 ∈ [9,0; 9,2), x87; …; x100 ∈ [9,2; 9,4).

Tứ phân vị thứ nhất của mẫu số liệu gốc là 12x25+x26 ∈ [8,8; 9,0).

Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

Q1=8,8+10045+12259,08,8=8,864.

Tứ phân vị thứ ba của mẫu số liệu gốc là 12x75+x76 ∈ [9,0; 9,2).

Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

Q3=9,0+310045+12+25449,29,0=9,15.

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

Q = Q3 – Q1 = 9,15 – 8,864 = 0,286.

b) Trong 100 cây keo trên có 1 cây cao 8,4 m thuộc nhóm [8,4; 8,6).

Vì Q1 – 1,5∆Q = 8,864 – 1,5 ∙ 0,286 = 8,435 > 8,4 nên chiều cao của cây keo cao 8,4 m là giá trị ngoại lệ của mẫu số liệu ghép nhóm.

Đánh giá

0

0 đánh giá