Cho đường tròn (O) đường kính AB, tiếp tuyến xx' tại A và tiếp tuyến yy' tại B của (O)

1.1 K

Với giải Bài 5.30 trang 110 Toán 9 Tập 1 Kết nối tri thức chi tiết trong Luyện tập chung trang 108 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Luyện tập chung trang 108

Bài 5.30 trang 110 Toán 9 Tập 1: Cho đường tròn (O) đường kính AB, tiếp tuyến xx' tại A và tiếp tuyến yy' tại B của (O). Một tiếp tuyến thứ ba của (O) tại điểm P (P khác A và B) cắt xx' tại M và cắt yy' tại N.

a) Chứng minh rằng MN = MA + NB.

b) Đường thẳng đi qua O và vuông góc với AB cắt NM tại Q. Chứng minh rằng Q là trung điểm của đoạn MN.

c) Chứng minh rằng AB tiếp xúc với đường tròn đường kính MN.

Lời giải:

Bài 5.30 trang 110 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

a) MA và MC là hai tiếp tuyến cắt nhau của (O) nên MA = MC.

NB và NC là hai tiếp tuyến cắt nhau của (O) nên NA = NC.

Ta có: MN = MC + NC = MA + NB

b) Gọi K là giao điểm của AN và OQ.

Ta có: BN // OK (vì cùng vuông góc với AB) và O là trung điểm của AB.

Suy ra OK là đường trung bình của tam giác ABN.

Do đó K là trung điểm của AN.

Lại có: AM // QK (vì cùng vuông góc với AB) và K là trung điểm của AN.

Suy ra QK là đường trung bình của tam giác AMN.

Do đó Q là trung điểm của MN.

c) OK là đường trung bình của tam giác ABN nên OK=12NB.

QK là đường trung bình của tam giác AMN nên QK=12MA.

Suy ra: OQ=OK+QK=12NB+12MA=12MN /span> hay OQ = AQ = BQ.

Do đó O thuộc đường tròn đường kính MN.

Mà OQ vuông góc với AB tại O nên AB là tiếp của đường tròn đường kính MN.

Đánh giá

0

0 đánh giá