Bài 4 trang 57 Toán 12 Tập 1 Chân trời sáng tạo | Giải bài tập Toán 12

285

Với giải Bài 4 trang 57 Toán 12 Tập 1 Chân trời sáng tạo chi tiết trong Bài 2: Toạ độ của vectơ trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 2: Toạ độ của vectơ trong không gian

Bài 4 trang 57 Toán 12 Tập 1: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 2, SA vuông góc với đáy và SA bằng 1 (Hình 14). Thiết lập hệ tọa độ như hình vẽ, hãy vẽ các vectơ đơn vị trên các trục Ox, Oy, Oz và tìm tọa độ của các điểm A, B, C, S.

Bài 4 trang 57 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Lời giải:

Bài 4 trang 57 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Các vectơ đơn vị trên các trục Ox, Oy, Oz lần lượt là i=OC,j=OE,k=OH với E là điểm thuộc tia Oy sao cho OE = 1 và H là điểm thuộc tia Oz sao cho OH = 1.

 ABC đều và AO  BC nên O là trung điểm của BC.

Mà BC = 2 nên OB = OC = 1 và OA=3.

 OB  i ngược hướng và OB = 1 nên OB=i. Suy ra B(−1; 0; 0).

 OC  i cùng hướng và OC = 1 nên OC=i. Suy ra C(1; 0; 0).

 OA  j cùng hướng và OA=3 nên OA=3j. Suy ra A0;3;0.

Theo quy tắc hình bình hành, ta có OS=OA+OH=3j+k. Suy ra S0;3;1.

Đánh giá

0

0 đánh giá