Bài 3 trang 56 Toán 12 Tập 1 Chân trời sáng tạo | Giải bài tập Toán 12

498

Với giải Bài 3 trang 56 Toán 12 Tập 1 Chân trời sáng tạo chi tiết trong Bài 2: Toạ độ của vectơ trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 2: Toạ độ của vectơ trong không gian

Bài 3 trang 56 Toán 12 Tập 1: Cho tứ diện SABC có ABC là tam giác vuông tại B, BC = 3, BA = 2, SA vuông góc với mặt phẳng (ABC) và có độ dài bằng 2 (Hình 13).

a) Xác định một hệ tọa độ dựa trên gợi ý của hình vẽ và chỉ ra các vectơ đơn vị trên các trục tọa độ.

b) Tìm tọa độ các điểm A, B, C, S.

Bài 3 trang 56 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Lời giải:

a)

Bài 3 trang 56 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Các vectơ đơn vị trên ba trục Ox, Oy, Oz lần lượt là i,j,kvới độ dài của i,j,k lần lượt bằng 13BC,12BA,12SA.

b) Vì B trùng với gốc tọa độ nên B(0; 0; 0).

 j BA cùng hướng và BA = 2 nên BA=2j. Suy ra A(0; 2; 0).

 i BC cùng hướng và BC = 3 nên BC=3i. Suy ra C(3; 0; 0).

Gọi E là hình chiếu của S lên trục Oz.

Ta có BE = AS = 2.

 k BE cùng hướng và BE = 2 nên BE=2k.

Theo quy tắc hình bình hành ta có:

BS=BA+BE=2j+2k. Suy ra S(0; 2; 2).

Đánh giá

0

0 đánh giá