Hộp thứ nhất có 3 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 3 viên bi xanh và 7 viên bi đỏ

604

Với giải Bài 1 trang 79 Toán 12 Tập 2 Chân trời sáng tạo chi tiết trong Bài 2: Công thức xác suất toàn phần và công thức Bayes giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 2: Công thức xác suất toàn phần và công thức Bayes

Bài 1 trang 79 Toán 12 Tập 2: Hộp thứ nhất có 3 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 3 viên bi xanh và 7 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời 2 viên bi từ hộp thứ hai.

a) Tính xác suất để hai viên bi lấy ra từ hộp thứ hai là bi đỏ.

b) Biết rằng 2 viên bi lấy ra từ hộp thứ hai là bi đỏ, tính xác suất viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ.

Lời giải:

a) Gọi A là biến cố “Lấy được 1 viên bi màu xanh ở hộp thứ nhất” và B là biến cố “Lấy được 2 viên bi màu đỏ ở hộp thứ hai”.

Khi đó ta có PA=39PB|A=C72C112=2155.

Suy ra PA¯=1PA=23PB|A¯=C82C112=2855.

Áp dụng công thức xác suất toàn phần:

PB=PA.PB|A+PA¯.PB|A¯=39.2155+23.2855=715.

b) Ta cần tính PA¯|B=PA¯.PB|A¯PB=23.2855715=811.

Đánh giá

0

0 đánh giá