Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 9 Bài tập cuối chương 5 chi tiết sách Toán 9 Tập 1 Chân trời sáng tạo giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 9. Mời các bạn đón xem:
Giải bài tập Toán 9 Bài tập cuối chương 5
Câu hỏi trắc nghiệm
A. Hai đường tròn cắt nhau.
B. Hai đường tròn ở ngoài nhau.
C. Hai đường tròn tiếp xúc ngoài.
D. Hai đường tròn tiếp xúc trong.
Lời giải:
Đáp án đúng là: C
Ta có: 9 = 5 + 4 nên OO’ = R + r, suy ra hai đường tròn (O; 5 cm) và (O’; 4 cm) tiếp xúc ngoài.
A. (O) và a cắt nhau tại hai điểm.
B. (O) và a tiếp xúc.
C. (O) và a không có điểm chung.
D. (O) và a có duy nhất điểm chung.
Lời giải:
Đáp án đúng là: A
Ta có d = 4 cm, R = 6 cm.
Vì d < R nên đường thẳng a cắt đường tròn (O; 6 cm) tại hai điểm.
Bài 3 trang 103 Toán 9 Tập 1: Góc ở tâm là góc
A. có đỉnh nằm trên đường tròn
B. có đỉnh nằm trên bán kính của đường tròn.
C. có hai cạnh là hai đường kính của đường tròn.
D. có đỉnh trùng với tâm đường tròn.
Lời giải:
Đáp án đúng là: C
Góc ở tâm là góc có đỉnh trùng với tâm đường tròn.
Bài 4 trang 103 Toán 9 Tập 1: Hình nào dưới đây biểu diễn góc nội tiếp?
A. Hình 1a.
B. Hình 1b.
C. Hình 1c.
D. Hình 1d.
Lời giải:
Đáp án đúng là: B
Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn đó.
Vậy hình 1b là hình biểu diễn góc nội tiếp.
Bài 5 trang 103 Toán 9 Tập 1: Góc nội tiếp chắn nửa đường tròn có số đo là
A. 180°.
B. 120°.
C. 90°.
D. 60°.
Lời giải:
Đáp án đúng là: C
Góc nội tiếp chắn nửa đường tròn là góc vuông.
Biết Số đo cung nhỏ AB là
A. 140°.
B. 230°.
C. 130°.
D. 150°.
Lời giải:
Đáp án đúng là: B
Xét tứ giác OAMB, ta có: (tổng các góc của một tứ giác).
Suy ra
Do đó
Khi đó
Bài 7 trang 104 Toán 9 Tập 1: Trong Hình 3, là góc
A. vuông.
B. tù.
C. nhọn.
D. bẹt.
Lời giải:
Đáp án đúng là: A
Xét đường tròn (O) đường kính AB, có là góc nội tiếp chắn nửa đường tròn nên
Bài 8 trang 104 Toán 9 Tập 1: Trong một đường tròn, khẳng định nào sau đây là sai?
A. Các góc nội tiếp chắn nửa đường tròn là góc vuông.
B. Hai góc nội tiếp bằng nhau chắn hai cung bằng nhau.
C. Hai góc nội tiếp cùng chắn một cung thì bằng nhau.
D. Hai góc nội tiếp bằng nhau thì cùng chắn một cung.
Lời giải:
Đáp án đúng là: D
Hai góc nội tiếp bằng nhau nhưng chưa chắc đã cùng chắn một cung.
Chẳng hạn, trong hình vẽ dưới đây, cùng là hai góc nội tiếp của đường tròn (O) nhưng hai góc này không cùng chắn một cung.
Bài 9 trang 104 Toán 9 Tập 1: Hình quạt tròn bán kính R, ứng với cung 90° có diện tích bằng
A. πR2.
B.
C.
D.
Lời giải:
Đáp án đúng là: C
Diện tích hình quạt tròn bán kính R, ứng với cung 90° là:
A. 12 cm2.
B. 24 cm2.
C. 4π cm2.
D. 12π cm2.
Lời giải:
Đáp án đúng là: D
Diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 2 cm) và (O; 4 cm) là:
S = π(R2 – r2) = π(42 – 22) = 12π (cm2).
Bài tập tự luận
Bài 11 trang 104 Toán 9 Tập 1: Quan sát Hình 4. Biết , OA ⊥ OC, OB ⊥ OD.
a) Đọc tên các góc ở tâm có trong hình.
b) Tính số đo của mỗi góc ở tâm tìm được ở câu a.
c) Tìm các cặp cung bằng nhau và có số đo nhỏ hơn 180°.
d) So sánh hai cung nhỏ và
Lời giải:
a) Các góc ở tâm là:
b) Ta có: Suy ra:
⦁
⦁
Ta có Suy ra
Vậy
c) Ta có:
⦁ hay nên
⦁ hay nên
d) Ta có:
a) AC vuông góc với DC;
b)
c) AB.AC = AH.AD.
Lời giải:
a) Xét đường tròn (O) có AD là đường kính, là góc nội tiếp chắn nửa đường tròn nên hay AC vuông góc với DC.
b) Xét đường tròn (O) có là hai góc nội tiếp cùng chắn cung AC nên
c) Xét ∆ABH và ∆ADC có:
(câu b)
Do đó ∆ABH ᔕ ∆ADC (g.g).
Suy ra (tỉ số các cạnh tương ứng) nên AB.AC = AH.AD.
Lời giải:
Độ dài cung n°, bán kính R là:
Suy ra và
Áp dụng các công thức trên, ta hoàn thành được bảng đã cho như sau:
a) Chứng minh rằng hai đường tròn (O) và (O’) tiếp xúc ngoài tại B.
b) Gọi H là trung điểm của AC. Vẽ dây DE của (O) vuông góc với AC tại H. Chứng minh tứ giác ADCE là hình thoi.
c) DC cắt đường tròn (O’) tại F. Chứng minh rằng ba điểm F, B, E thẳng hàng.
d) Chứng minh rằng HF là tiếp tuyến của đường tròn (O’).
Lời giải:
a) Ta có OO’ = OB + BO’ nên đường tròn (O) và (O’) tiếp xúc ngoài tại B.
b) Xét ∆ODE có OD = OE (cùng là bán kính của đường tròn (O) đường kính AB) nên ∆ODE cân tại O. Do đó đường cao OH đồng thời là đường trung tuyến của tam giác hay H là trung điểm của DE.
Xét tứ giác ADCE có hai đường chéo AC và DE cắt nhau tại trung điểm H của mỗi đường nên ADCE là hình bình hành.
Lại có DE ⊥ AC tại H nên hình bình hành ADCE là hình thoi.
c) Xét đường tròn (O) có AB là đường kính, là góc nội tiếp chắn nửa đường tròn nên do đó AD ⊥ DB.
Lại có AD // CE (do ADCE là hình thoi) nên DB ⊥ CE.
Xét ∆CDE có DB, CH là hai đường cao của tam giác cắt nhau tại B (do DB ⊥ CE và CH ⊥ DE) nên B là trực tâm của ∆CDE. Suy ra EF ⊥ CD. (1)
Xét đường tròn (O’) có BC là đường kính, là góc nội tiếp chắn nửa đường tròn nên do đó BF ⊥ CD. (2)
Từ (1) và (2) ta có EF, BF là hai đường thẳng cùng đi qua điểm F và vuông góc với CD nên là hai đường thẳng trùng nhau, hay ba điểm E, B, F thẳng hàng.
d) Vì BF ⊥ CD nên ∆DEF vuông tại F có FH là đường trung tuyến ứng với cạnh huyền nên mà H là trung điểm của DE nên do đó FH = HE.
Xét ∆HEF có FH = HE nên ∆HEF cân tại H. Do đó (hai góc ở đáy bằng nhau).
Xét ∆O’BF có O’B = O’F (cùng là bán kính của đường tròn (O’) đường kính BC) nên ∆O’BF cân tại O’. Suy ra (hai góc ở đáy bằng nhau).
Mà (đối đỉnh) nên
Ta có: (do ∆HBE vuông tại H).
Hay nên HF ⊥ O’F tại F.
Xét đường tròn (O’) có HF ⊥ O’F tại F thuộc đường tròn nên HF là tiếp tuyến của đường tròn (O’).
Lời giải:
Gọi R là bán kính Trái Đất, khi đó R ≈ 6 400 km.
Đổi 65 m = 0,065 km; 5 m = 0,005 km.
Ta có: OA = R + 0,065 ≈ 6 400 + 0,065 = 6 400,065 (km).
OB = R + 0,005 ≈ 6 400 + 0,005 = 6 400,005 (km).
Xét ∆OHA vuông tại H, theo định lí Pythagore, ta có: OA2 = OH2 + AH2
Suy ra AH2 = OA2 – OH2 ≈ 6 400,0652 – 6 4002 = 832,004225.
Do đó
Xét ∆OHB vuông tại H, theo định lí Pythagore, ta có: OB2 = OH2 + BH2
Suy ra BH2 = OB2 – OH2 ≈ 6 400,0052 – 6 4002 = 64,000025.
Do đó
Ta có AB = AH + HB ≈ 28,84 + 8 = 36,84 (km).
Vậy với khoảng cách khoảng 36,84 kilômét thì người quan sát trên tàu bắt đầu trông thấy ngọn của hải đăng.
Xem thêm các bài giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:
Bài 4. Hình quạt tròn và hình vành khuyên
Hoạt động 1. Làm giác kế đo góc nâng đơn giản
Hoạt động 2. Vẽ đường tròn bằng phần mềm GeoGebra
Bài 1. Hàm số và đồ thị của hàm số y = ax2 (a ≠ 0)
Bài 2. Phương trình bậc hai một ẩn