Với lời giải Toán 8 trang 82 Tập 2 chi tiết trong Bài 7: Trường hợp đồng dạng thứ hai của tam giác sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:
Giải Toán 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác
Bài 2 trang 82 Toán 8 Tập 2: Cho Hình 75, chứng minh:
a) ∆IAB ᔕ ∆IDC;
b) ∆IAD ᔕ ∆IBC.
Lời giải:
a) Ta có Suy ra
Xét ∆IAB và ∆IDC có:
(đối đỉnh) và
Vậy ∆IAB ᔕ ∆IDC (c.g.c).
b) Ta có Suy ra
Xét ∆IAD và ∆IBC có:
(đối đỉnh) và
Vậy ∆IAD ᔕ ∆IBC (c.g.c).
Bài 3 trang 82 Toán 8 Tập 2: Cho Hình 76, biết AB = 4, BC = 3, BE = 2, BD = 6. Chứng minh:
a) ∆ABD ᔕ ∆EBC;
b)
c) Tam giác DGE vuông.
Lời giải:
a) Ta có Suy ra
Xét∆ABD và ∆EBCcó:
và
Vậy ∆ABD ᔕ ∆EBC (c.g.c).
b) Do ∆ABD ᔕ ∆EBC (câu a), suy ra (hai góc tương ứng)
Mà (đối đỉnh) nên
c) Ta có (tổng hai góc nhọn của ∆ABD vuông tại B bằng 90°)
Mà (câu b)
Suy ra hay
Xét ∆GDE có (tổng ba góc của một tam giác)
Suy ra
Vậy tam giác DGE vuông tại G.
Bài 4 trang 82 Toán 8 Tập 2: Cho Hình 77, chứng minh:
a)
b) BC ⊥ BE.
Lời giải:
a) Ta có Suy ra
Xét ∆ABC và ∆DEB có:
Suy ra ∆ABC ᔕ ∆DEB (c.g.c).
Do đó (hai góc tương ứng).
b) Ta có (tổng hai góc nhọn của ∆BDE vuông tại D bằng 90°)
Mà (câu a)
Suy ra
Lại có
Nên
Do đó BC ⊥ BE.
Bài 5 trang 82 Toán 8 Tập 2: Cho ∆ABC ᔕ ∆MNP.
a) Gọi D và Q lần lượt là trung điểm của BC và NP. Chứng minh ∆ABD ᔕ ∆MNQ.
b) Gọi G và K lần lượt là trọng tâm của hai tam giác ABC và MNP. Chứng minh ∆ABG ᔕ ∆MNK.
Lời giải:
a) Vì ∆ABC ᔕ ∆MNP (giả thiết) nên và
Vì D, Q lần lượt là trung điểm của BC và NP nên
Do đó suy ra
Xét ∆ABDvà ∆MNQ có:
(do
Suy ra ∆ABD ᔕ ∆MNQ (c.g.c).
b) Vì ∆ABD ᔕ ∆MNQ (câu a) (hai góc tương ứng) và (tỉ số đồng dạng)
Mà G, K lần lượt là trọng tâm của hai tam giác ABC và MNP nên
Do đó
Xét ∆ABG và ∆MNK có:
(do
Vậy ∆ABG ᔕ ∆MNK (c.g.c).
Bài 6 trang 82 Toán 8 Tập 2: Cho Hình 78, biết AH2 = BH.CH. Chứng minh:
a) ∆HAB ᔕ ∆HCA;
b) Tam giác ∆ABC vuông tại A.
Lời giải:
a) Từ AH2 = BH.CH ta có
Xét ∆HAB và ∆HCA có:
Suy ra ∆HAB ᔕ ∆HCA (c.g.c).
b) Vì ∆HAB ᔕ ∆HCA (câu a) nên (hai góc tương ứng).
Mà (tổng hai góc nhọn của ∆ABH vuông tại H bằng 90°)
Suy ra hay
Vậy ∆ABC vuông tại A.
Bạn Vy làm như sau: Vẽ tam giác A’B’C’ có A’B’ = 2 cm, A’C’ = 5 cm, Bạn Vy lấy thước đo khoảng cách giữa hai điểm B’, C’ và nhận được kết quả B’C’ ≈ 6,6 cm. Từ đó, bạn Vy kết luận khoảng cách giữa hai vị trí B, C trên thực tế khoảng 66 m. Em hãy giải thích tại sao bạn Vy có thể kết luận như vậy.
Lời giải:
Đổi A’B’ = 2 cm = 0,02 m;
A’C’ = 5 cm = 0,05 m;
B’C’ = 6,6 cm = 0,066 m.
Ta có
Do đó
Xét ∆ABC và ∆A’B’C’ có:
Suy ra ∆ABC ᔕ ∆A’B’C’ (c.g.c)
Do đó
Nên BC = 1 000 . B’C’ = 1 000 . 0,066 = 66 (m).
Vậy khoảng cách giữa hai vị trí B, C trên thực tế khoảng 66m.
Xem thêm các lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:
Hoạt động 1 trang 79 Toán 8 Tập 2: Quan sát Hình 68 và so sánh:...
Bài 2 trang 82 Toán 8 Tập 2: Cho Hình 75, chứng minh:...
Bài 3 trang 82 Toán 8 Tập 2: Cho Hình 76, biết AB = 4, BC = 3, BE = 2, BD = 6. Chứng minh:...
Bài 4 trang 82 Toán 8 Tập 2: Cho Hình 77, chứng minh:...
Bài 5 trang 82 Toán 8 Tập 2: Cho ∆ABC ᔕ ∆MNP...
Bài 6 trang 82 Toán 8 Tập 2: Cho Hình 78, biết AH2 = BH.CH. Chứng minh:...
Xem thêm các bài giải SGK Toán lớp 8 Cánh diều hay, chi tiết khác: