Bài 5 trang 82 Toán 8 Tập 2 Cánh diều | Giải bài tập Toán lớp 8

440

Với giải Bài 5 trang 82 Toán 8 Tập 2 Cánh diều chi tiết trong Bài 7: Trường hợp đồng dạng thứ hai của tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác

Bài 5 trang 82 Toán 8 Tập 2: Cho ∆ABC ᔕ ∆MNP.

a) Gọi D và Q lần lượt là trung điểm của BC và NP. Chứng minh ∆ABD ᔕ ∆MNQ.

b) Gọi G và K lần lượt là trọng tâm của hai tam giác ABC và MNP. Chứng minh ∆ABG ᔕ ∆MNK.

Lời giải:

Bài 5 trang 82 Toán 8 Tập 2 Cánh diều | Giải Toán 8

a) Vì ∆ABC ᔕ ∆MNP (giả thiết) nên ABC^=MNP^ và ABMN=BCNP

Vì D, Q lần lượt là trung điểm của BC và NP nên BD=12BC,  NQ=12NP

Do đó BDNQ=12BC12NP=BCNQ, suy ra ABMN=BDNQ  =BCNP

Xét ∆ABDvà ∆MNQ có:

ABD^=MNQ^ (do ABC^=MNP^);

ABMN=BDNQ

Suy ra ∆ABD ᔕ ∆MNQ (c.g.c).

b) Vì ∆ABD ᔕ ∆MNQ (câu a) BAD^=NMQ^ (hai góc tương ứng) và ABMN=ADMQ (tỉ số đồng dạng)

Mà G, K lần lượt là trọng tâm của hai tam giác ABC và MNP nên AG=23AD,  MK=23MQ

Do đó ABMN=ADMQ=23AD23MQ=AGMK

Xét ∆ABG và ∆MNK có:

BAG^=NMK^ (do BAD^=NMQ^);

ABMN=AGMK

Vậy ∆ABG ᔕ ∆MNK (c.g.c).

Đánh giá

0

0 đánh giá