Giải Toán 8 trang 53 Tập 2 Cánh diều

77

Với lời giải Toán 8 trang 53 Tập 2 chi tiết trong Bài 1: Định lí Thalès trong tam giác sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 1: Định lí Thalès trong tam giác

Hoạt động 2 trang 53 Toán 8 Tập 2: Quan sát Hình 3 và cho biết:

a) Đường thẳng d có song song với BC hay không;

b) Bằng cách đếm số ô vuông, dự đoán xem các tỉ số AMMB,ANNC có bằng nhau hay không.

Hoạt động 2 trang 53 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Lời giải:

a) Đường thẳng dvà BC nằm trên hai dòng kẻ nên đường thẳng d song song với BC;

b) Ta có AMMB=21=2 và ANNC=21=2.

Vậy AMMB=ANNC=2.

Luyện tập 1 trang 53 Toán 8 Tập 2: Trong Hình 4, chứng tỏ rằng nếu MN // BCthì  MBAB=NCAC.

Luyện tập 1 trang 53 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Lời giải:

Do MN // BC nên theo định lí Thalès, ta có: AMMB=ANNC.

Suy ra AMAN=MBNC (tính chất tỉ lệ thức)

Do đó AMAN=MBNC=AM+MBAN+NC=ABAC (tính chất dãy tỉ số bằng nhau)

Hay MBNC=ABAC, nên MBAB=NCAC.

Luyện tập 2 trang 53 Toán 8 Tập 2: Cho tam giác ABC có G là trọng tâm. Đường thẳng qua G song song với BC lần lượt cắt cạnh AB, AC tại M, N. Chứng minh AMAB=ANAC=23.

Lời giải:

Luyện tập 2 trang 53 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Gọi P là trung điểm của BC.

Xét ∆ABP với MG // BN (do G ∈ MN, P ∈ BC), ta có:

AMMB=AGGP (định lí Thalès)

Suy ra AMAG=MBGP (tính chất tỉ lệ thức)

Do đó AMAG=MBGP=AM+MBAG+GP=ABAP (tính chất dãy tỉ số bằng nhau)

Hay AMAG=ABAP, nên AMAB=AGAP.

Mà G là trọng tâm ∆ABC nên AGAP=23 (tính chất trọng tâm của một tam giác)

Do đó, AMAB=AGAP=23 (1)

Tương tự, xét ∆ABC với MN // BC ta cũng có AMAB=ANAC (2)

Từ (1) và (2), suy ra AMAB=ANAC=23.

Đánh giá

0

0 đánh giá