Giải Toán 8 trang 57 Tập 2 Chân trời sáng tạo

342

Với lời giải Toán 8 trang 57 Tập 2 chi tiết trong Bài 3: Tính chất đường phân giác của tam giác sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 3: Tính chất đường phân giác của tam giác

Bài 2 trang 57 Toán 8 Tập 2: Tam giác ABC có AB = 6 cm, AC = 8 cm, BC = 10 cm. Đường phân giác của góc BAC cắt cạnh BC tại D.

a) Tính độ dài các đoạn thẳng DB và DC.

b) Tính tỉ số diện tích giữa ΔADB và ΔADC.

Lời giải:

a) Tam giác ABC có AD là đường phân giác nên DBAB=DCAC

Áp dụng tính chất dãy tỉ số bằng nhau, ta có

DBAB=DCAC=DB+DCAB+AC=BCAB+AC

Nên DB8=DC6=108+6

Vậy DB=407cm, BC=307cm

b) Vẽ AH ⊥ BC tại H

SABDSACD=12AH.DB12AH.DC=DBDC=407307=43.

Bài 3 trang 57 Toán 8 Tập 2: Tam giác ABC có AB = 15 cm, AC = 20 cm, BC = 25 cm. Đường phân giác của góc BAC cắt BC tại D. Qua D vẽ DE // AB (E ∈ AC).

a) Tính độ dài các đoạn thẳng DB, DC và DE.

b) Chứng minh ABC là tam giác vuông. Tính diện tích tam giác ABC.

c) Tính diện tích các tam giác ADB, ADE và DCE.

Lời giải:

Bài 3 trang 57 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

a) Trong tam giác ABC, ta có: AD là tia phân giác của BAC^.

Suy ra: DBDC=ABAC(tính chất đường phân giác)

Mà AB = 15 cm; AC = 20 cm.

Nên DBDc=1520

Suy ra: DBDB+DC=1515+20 (tính chất tỉ lệ thức)

Suy ra: DBBC=1535

Nên: DB=1535.25=757(cm)

Do đó DC=BC-BD=25-757=1007(cm)

Xét tam giác ABC có DE // AB, theo hệ quả định lí Thalès, ta có:

DEAB=CDBCDE15=100725

Vậy DE=607cm.

b) Xét tam giác ABC ta có: AB = 15 cm, AC = 20 cm, BC = 25 cm.

Nên BC2=AB2+AC2 suy ra tam giác ABC vuông tại A.

Khi đó, ta có: SABC=12AC.AB=12.20.15=150(cm2)

Vậy diện tích tam giác ABC là 150 cm2.

c) Kẻ AH ⊥ BC ta có: 

SADBSABC=12AH.BD12AH.BC=DBDC=407307=43

Suy ra SADB=37SABC=37150=4507cm2

SDCESABC=12CE.DE12AC.AB=DEAB2=607252=1441225

Suy ra

SDCE=1441225SABC=1441225150=86449cm2

SADE=SABCSADBSDCE=150450786449=333649cm2

Vậy SADB=4507cm2; SDCE=86449cm2; SADE=333649cm2

Bài 4 trang 57 Toán 8 Tập 2: Cho tam giác ABC vuông tại A có AB = 3 cm, AC = 4 cm. Đường phân giác của góc A cắt BC tại D.

a) Tính BC, DB, DC.

b) Vẽ đường cao AH. Tính AH, HD và AD.

Lời giải:

Bài 4 trang 57 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

a) Tam giác ABC vuông tại A, áp dụng định lí Pythagore, ta có: 

BC2=AC2+AB2 suy ra BC = 5 cm

AD là tia phân giác góc A nên DBDC=ABAC suy ra DB5-DB=34

4DB=15-3DBDB=157(cm).

Do đó DC=BC-DB=5-157=207(cm).

Vậy BC = 5 cm, DB=157cmDC=207cm

b) Ta có: SABC=12AB.AC=12AH.BC

AH=AB.ACBC=3.45=125(cm)

Tam giác ABH vuông tại H nên 

HB=AB2-AH2=32-1252=95(cm)

Ta có: HD=DB-HB=157-95=1235(cm)

Tam giác ABH vuông tại H nên 

AD=HD2+AH2=12352+1252=1227cm

Vậy AH=125cmHD=1235cmAD=1227cm.

Bài 5 trang 57 Toán 8 Tập 2: Cho tam giác ABC có trung tuyến AM. Đường phân giác của góc AMB cắt AB tại D và đường phân giác của góc AMC cắt AC tại E (Hình 8). Chứng minh DE // BC.

Bài 5 trang 57 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

• Xét tam giác ABM có MD là đường phân giác AMB^ suy ra DADB=MAMB.

• Xét tam giác ACM có ME là đường phân giác AMC^ suy ra EAEB=MAMC.

Mà MB = MC, do đó: DADB=EAEC, theo định lí Thalès đảo ta có: DE // BC.

Đánh giá

0

0 đánh giá