Giải Toán 8 trang 83 Tập 2 Kết nối tri thức

81

Với lời giải Toán 8 trang 83 Tập 2 chi tiết trong Bài 34: Ba trường hợp đồng dạng của hai tam giác sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 34: Ba trường hợp đồng dạng của hai tam giác

Mở đầu trang 83 Toán 8 Tập 2: Trong môn Bóng đá, độ khó của mỗi pha ghi bàn còn được tính bởi góc sút vào cầu môn là rộng hay hẹp. Nếu biết độ rộng của khung thành là 7,32 m, trái bóng cách hai cột gôn lần lượt là 10,98 m và 14,64 m thì em có cách nào để đo được góc sút ở vị trí này bởi các dụng cụ học tập không?

Mở đầu trang 83 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Lời giải:

Vì trong hình vẽ mặt sân được vẽ nghiêng nên nếu đo trực tiếp trong sách giáo khoa sẽ không đúng bằng góc thực tế.

Vẽ một tam giác bằng dụng cụ học tập trên giấy có một góc đúng bằng góc sút. Từ đó sử dụng dụng cụ học tập là thước đo góc để đo góc sút.

HĐ1 trang 83 Toán 8 Tập 2: Cho hai tam giác ABC và A'B'C' có A'B'AB=A'C'AC=B'C'BC .

a) Nếu A′B' = AB thì hai tam giác có đồng dạng với nhau không? Vì sao?

b) Nếu A′B' < AB như Hình 9.11. Trên đoạn thẳng AB lấy điểm M sao cho AM = A′B′. Kẻ đường thẳng qua M song song với BC và cắt AC tại N.

- Hãy giải thích vì sao ΔAMN ∽ ΔABC.

- Hãy chứng tỏ rằng AN = A′C′, MN = B′C′ để suy ra ΔAMN = ΔA'B'C' (c.c.c).

- Hai tam giác A'B'C' và ABC có đồng dạng với nhau không? Nếu có, em hãy viết đúng kí hiệu đồng dạng giữa chúng.

c) Nếu A'B' > AB thì tam giác A'B'C' có đồng dạng với tam giác ABC không? Vì sao?

HĐ1 trang 83 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Lời giải:

a)  Nếu A′B′ = AB thì từ A'B'AB=A'C'AC=B'C'BC , suy ra A′C′ = AC và B′C′ = BC. 

Do đó ΔABC = ΔA'B'C' (c.c.c). Vậy ΔABC ∽ ΔA'B'C'.

b) Ta có MN // BC ( M ∈ AB, N ∈ AC). Suy ra ΔAMN ∽ ΔABC.

Suy ra AMAB=ANAC=MNBC .

 A'B'AB=A'C'AC=B'C'BC  nên A'B'AM=A'C'AN=B'C'MN .

Có AM = A'B', suy ra A'C' = AN và B'C' = MN nên ∆AMN = ∆A'B'C' (c.c.c).

Suy ra ∆AMN ∽ ∆A'B'C', mà ∆AMN ∽ ∆ABC nên ∆ABC ∽ ∆A'B'C'.

c) Nếu A'B' > AB, bằng cách đổi vai trò cho ∆ABC và ∆A'B'C' cho nhau thì theo câu b), ta có ∆ABC ∽ ∆A'B'C'.

Đánh giá

0

0 đánh giá