Với lời giải Toán 11 trang 85 Tập 2 chi tiết trong Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
a) [S, BC, O];
b) [C, SO, B].
Lời giải:
a) Gọi M là trung điểm BC.
ΔSBC đều ⇒ SM ⊥ BC
ΔOBC vuông cân tại O ⇒ OM ⊥ BC
Khi đó góc phẳng nhị diện [S, BC, O] = (MO, MS).
Ta có: O là trung điểm của BD, M là trung điểm của BC
⇒ OM là đường trung bình của ΔBCD
ΔSBC đều, M là trung điểm của BC
⇒ SM là đường trung tuyến
.
Suy ra [S, BC, O] = (MO, MS)
b) Ta có:
• SO ⊥ (ABCD) nên SO⊥OB
• SO ⊥ (ABCD) nên SO⊥OC
Vậy là góc phẳng nhị diện [C, SO, B].
Mà ABCD là hình vuông nên .
Vậy [C, SO, B] = 90o.
(Nguồn: https://en.wikipedia.org/wiki/Memphis_Pyramid)
Lời giải:
Mô hình hoá kim tự tháp bằng chóp tứ giác đều S.ABCD với O là tâm của đáy.
Vậy AB = 180 m, SO = 98 m.
Gọi M là trung điểm của BC.
• ΔSBC đều nên SM ⊥ BC.
• ΔOBC vuông cân tại O nên OM ⊥ BC.
Khi đó góc phẳng nhị diện [S, BC, O] = (MO, MS) = .
Ta có: O là trung điểm của BD, M là trung điểm của BC.
Suy ra OM là đường trung bình của ΔBCD.
Do đó .
Khi đó: .
Bài tập
Bài 1 trang 85 Toán 11 Tập 2: Cho tứ diện đều ABCD. Vẽ hình bình hành BCED.
a) Tìm góc giữa đường thẳng AB và (BCD).
b) Tìm góc phẳng nhị diện [A,CD,B]; [A,CD, E].
Lời giải:
a) Gọi I là trung điểm của CD, O là tâm của ΔBCD.
AO ⊥ (BCD)
(AB, (BCD)) = (AB, OB) =
Vậy góc giữa đường thẳng AB và (BCD) là .
b)
• ΔACD đều nên AI ⊥ CD
• ΔBCD đều nên BI ⊥ CD
Do đó .
Vậy là góc phẳng nhị diện [A, CD, B].
• ΔACD đều nên AI ⊥ CD
• ΔECD đều nên EI ⊥ CD
Do đó .
Vậy là góc phẳng nhị diện [A,CD, E].
a) Tìm góc giữa đường thẳng SA và (ABCD).
b) Tìm góc phẳng nhị diện [A, SO, B], [S, AB, O].
Lời giải:
a) S.ABCD là hình chóp tứ giác đều có O là tâm của đáy
SO ⊥ (ABCD) ⇒ (SA, (ABCD)) = (SA,OA) =
Vậy góc giữa đường thẳng SA và (ABCD) là
b) Gọi M là trung điểm của AB
SO ⊥ (ABCD) ⇒ SO ⊥ AO, SO ⊥ BO
Vậy là góc phẳng nhị diện [A, SO, B]
• ABCD là hình vuông nên
• ΔSAB đều nên SM ⊥ AB
• ΔOAB vuông cân tại O nên OM ⊥ AB
Vậy là góc phẳng nhị diện [S, AB, O].
a) Tìm góc giữa cạnh bên và mặt đáy.
b) Tìm góc phẳng nhị diện [O, AB, A′]; [O′, A′B′, A].
Lời giải:
a) Kẻ C′H ⊥ OC (H OC).
OO′C′H là hình chữ nhật nên OO′// C′H.
Mà OO′ ⊥ (ABCDEF) nên C′H ⊥ (ABCDEF).
Do đó (CC′, (ABCDEF)) = (CC′, CH) = .
b) Gọi M, M′ lần lượt là trung điểm của AB, A′B′.
Khi đó, OM ⊥ AB, O′M′ ⊥ A′B.
ABB′A′ là hình thang cân nên MM′ ⊥ AB, MM′ ⊥ A′B.
Do đó [O, AB, A′] = ; [O′, A′B′, A] = .
a) Tính số đo góc giữa đường thẳng CA′ và (CC′B′B).
b) Tính số đo góc nhị diện cạnh CC′.
Lời giải:
a) Xét tam giác vuông CBB′ có:
Gọi là góc giữa đường thẳng (CA′, (CC′B′B)) =
Khi đó: .
Suy ra .
b) Ta có: CC′ ⊥ (ABC) ⇒ CC′ ⊥ AC, CC′ ⊥ BC.
Gọi là góc phẳng nhị diện cạnh [A’, CC’, B’] = .
.
Suy ra
Lời giải:
Vì ABCD là hình vuông nên ta có OF = 7m
Chiều cao khối chóp S.ABCD là:
Tuơng tự có chiều cao khối chóp S.A′B′C′D′ là: SO′ = 5m
Thể tích khối chóp S.ABCD:
Thể tích khối chóp S.A’B’C’D’:
Thể tích khối chóp cụt bằng số khối đất phải đào:
.
Vậy có 290,6 m3 khối đất cần phải di chuyển ra khỏi hầm.
Xem thêm các lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Hoạt động khám phá 1 trang 82 Toán 11 Tập 2: Cho đường thẳng a và mặt phẳng (P)...
Bài 1 trang 85 Toán 11 Tập 2: Cho tứ diện đều ABCD. Vẽ hình bình hành BCED...
Xem thêm các bài giải SGK Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: