Với lời giải Toán 11 trang 73 Tập 2 chi tiết trong Bài 3: Hai mặt phẳng vuông góc sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 Bài 3: Hai mặt phẳng vuông góc
Thực hành 5 trang 73 Toán 11 Tập 2: Cho hình chóp cụt tam giác đều ABC.A′B′C′ có cạnh đáy lớn bằng a, cạnh đáy nhỏ và cạnh bên 2a. Tính độ dài đường cao của hình chóp cụt đó.
Lời giải:
Gọi O, O′ lần lượt là tâm của hai đáy ABC và A′B′C′; M, M′ lần lượt là trung điểm của BC và B′C′.
Kẻ A′H ⊥ AO (H ∈ AO).
Khi đó, ta có A′H = OO′.
• ΔABC đều nên .
• ΔA′B′C′ đều nên .
• A′HOO′ là hình chữ nhật nên .
• Tam giác AA′H vuông tại H nên .
Vận dụng 5 trang 73 Toán 11 Tập 2: Một người cần sơn tất cả các mặt của một cái bục để đặt tượng có dạng hình chóp cụt lục giác đều có cạnh đáy lớn 1 m, cạnh bên và cạnh đáy nhỏ bằng 0,7 m. Tính tổng diện tích cần sơn.
Lời giải:
Diện tích đáy lớn là: (m2)
Diện tích đáy nhỏ là: (m2)
Một mặt bên của hình chóp cụt là hình thang cân có đáy lớn là 1 m, đáy nhỏ là 0,7 m và cạnh bên là 0,7 m.
Khi đó, chiều cao của mặt bên là: (m)
Diện tích một mặt bên là: . (m2)
Vậy tổng diện tích cần sơn là: (m2)
Bài tập
Bài 1 trang 73 Toán 11 Tập 2: Cho hình chóp S.ABC có đáy là tam giác vuông tại C, mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với (ABC).
a) Chứng minh rằng (SBC) ⊥ (SAC).
b) Gọi I là trung điểm của SC. Chứng minh rằng (ABI) ⊥ (SAC).
Lời giải:
a) Ta có (SAC) ⊥ (ABC) ⇒ AC ⊥ (ABC) ⇒ AC ⊥ BC
Mà (SAC) ∩ (ABC) = AC nên BC ⊥ (SAC)
Do đó (SBC) ⊥ (SAC).
b) Ta có: BC ⊥ (SAC) nên BC ⊥ AI (AI ⊂ (SAC)) (1)
Tam giác SAC đều có I là trung điểm của SC nên AI ⊥ SC (2)
Từ (1) và (2) suy ra AI ⊥ (SBC)
Mà AI ⊂ (ABI) nên (ABI) ⊥ (SAC)
Bài 2 trang 73 Toán 11 Tập 2: Cho tam giác đều ABC cạnh a, I trung điểm của BC, D là điểm đối xứng với A qua I. Vẽ đoạn thẳng SD có độ dài và vuông góc với (ABC). Chứng minh rằng:
a) (SBC) ⊥ (SAD);
b) (SAB) ⊥ (SAC).
Lời giải:
a) Tam giác ABC đều có I là trung điểm nên AI ⊥ CB hay AD ⊥ BC.
Vì SD ⊥ (ABC) ⇒ SD ⊥ BC.
⇒ BC ⊥ (SAD)
Nên (SAD) ⊥ (SBC)
b) Tam giác ABC đều nên
Ta có: ΔSAD vuông tại D nên
Kẻ IH ⊥ SA.
Xét ΔAHI và ΔADS:
chung
Do đóΔAHI ᔕ ΔADS (g.g)
Tam giác BHC có HI là trung tuyến và HI = BC
⇒ ΔBHC vuông tại H.
Ta có: BC ⊥ (SAD) nên SA ⊥ BC.
Mà SA ⊥ HI nên SA ⊥ (HBC)
Mà HB ⊂ (SAB)
⇒ (SAB) ⊥ (SAC)
Bài 3 trang 73 Toán 11 Tập 2: Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy ABCD là hình thang vuông tại A và B, AA′ = 2a, AD = 2a, AB = BC = a.
a) Tính độ dài đoạn thẳng AC′.
b) Tính tổng diện tích các mặt của hình lăng trụ.
Lời giải:
a) Ta có:
Vậy độ dài đoạn thẳng AC′ là .
b)
Gọi I là trung điểm của AD.
Khi đó ABCI là hình vuông nên IC = IB = IA = AD = a
Xét tam giác ICD vuông cân tại I:
Tổng diện tích các mặt của hình lăng trụ là:
Vậy tổng diện tích các mặt của hình lăng trụ là:
Xem thêm các lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Hoạt động khởi động trang 65 Toán 11 Tập 2: Trong thực tế, người ta thường nói mặt ngang và mặt đứng của các bậc thang vuông góc với nhau. Vậy thế nào là hai mặt phẳng vuông góc?...
Hoạt động khám phá 1 trang 65 Toán 11 Tập 2: a) Có thể xác định góc giữa hai cánh cửa nắp hầm (Hình 1) bằng cách sử dụng góc giữa hai cây chống vuông góc với mỗi cánh hay không?...
Hoạt động khám phá 2 trang 66 Toán 11 Tập 2: Từ một điểm O vẽ hai tia Ox và Oy lần lượt vuông góc với hai bức tường trong phòng. Đo góc ....
Hoạt động khám phá 3 trang 67 Toán 11 Tập 2: Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến d, điểm M không thuộc (P) và (Q). Gọi H và K lần lượt là hình chiếu vuông góc của M lên (P) và (Q). Gọi là giao điểm của d và (MHK) (Hình 8)...
Thực hành 1 trang 67 Toán 11 Tập 2: Cho hình chóp S.ABCD có các cạnh bên bằng nhau và đáy là hình vuông. Chứng minh rằng:...
Vận dụng 1 trang 67 Toán 11 Tập 2: Mô tả cách kiểm tra một bức tường vuông góc với mặt sàn bằng hai cái êke trong Hình 10...
Hoạt động khám phá 4 trang 67 Toán 11 Tập 2: Cho đường thẳng a vuông góc với mặt phẳng (Q). Mặt phẳng (P) chứa a và cắt (Q) theo giao tuyến c. Trong (Q) ta vẽ đường thẳng b vuông góc với c. Hỏi:...
Hoạt động khám phá 5 trang 68 Toán 11 Tập 2: Cho hai mặt phẳng (P) và (Q) cùng vuông góc với mặt phẳng (R). Gọi a là giao tuyến của (P) và (Q). Lấy điểm M trong (R), vẽ hai đường thẳng MH và MK lần lượt vuông góc với (P) và (Q). Hỏi:...
Thực hành 2 trang 69 Toán 11 Tập 2: Tứ diện ABCD có AB ⊥ (BCD). Trong tam giác BCD vẽ đường cao BE và DF cắt nhau tại O. Trong mặt phẳng (ACD) vẽ DK vuông góc với AC tại K. Gọi H là trực tâm của tam giác ACD. Chứng minh rằng:...
Vận dụng 2 trang 69 Toán 11 Tập 2: Nêu cách đặt một quyển sách lên mặt bàn sao cho tất cả các trang sách đều vuông góc với mặt bàn...
Hoạt động khám phá 6 trang 69 Toán 11 Tập 2: a) Cho hình lăng trụ ABCDE.A′B′C′D′E′ có cạnh bên AA′ vuông góc với một mặt phẳng đáy (Hình 18a). Có nhận xét gì về các mặt bên của hình lăng trụ này?...
Thực hành 3 trang 71 Toán 11 Tập 2: Cho hình lăng trụ lục giác đều ABCDEF.A′B′C′D′E′F′ có cạnh bên bằng h và cạnh đáy bằng a. Tính A′C và A′D theo a và h....
Vận dụng 3 trang 71 Toán 11 Tập 2: Một chiếc lồng đèn kéo quân có dạng hình lăng trụ lục giác đều với cạnh đáy bằng 10 cm và cạnh bên bằng 30 cm (Hình 20). Tính tổng diện tích các mặt bên của chiếc lồng đèn đó...
Hoạt động khám phá 7 trang 71 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông với tâm O và các cạnh bên của hình chóp bằng nhau (Hình 21). Đường thẳng SO có vuông góc với đáy không?...
Thực hành 4 trang 72 Toán 11 Tập 2: Cho hình chóp tứ giác đều S.ABCD có O là tâm của đáy và AB = a, SA = 2a. Tính SO theo a...
Vận dụng 4 trang 72 Toán 11 Tập 2: Cho biết kim tự tháp Khafre tại Ai Cập có dạng hình chóp tứ giác đều với chiều cao khoảng 136m và cạnh đáy dài khoảng 152m. Tính độ dài đường cao của mặt bên xuất phát từ đỉnh của kim tự tháp...
Hoạt động khám phá 8 trang 72 Toán 11 Tập 2: Cho hình chóp đều S.A1A2...A6. Mặt phẳng (P) song song với mặt đáy và cắt các cạnh bên lần lượt tại A′1A′2...A′6...
Thực hành 5 trang 73 Toán 11 Tập 2: Cho hình chóp cụt tam giác đều ABC.A′B′C′ có cạnh đáy lớn bằng a, cạnh đáy nhỏ và cạnh bên 2a. Tính độ dài đường cao của hình chóp cụt đó...
Vận dụng 5 trang 73 Toán 11 Tập 2: Một người cần sơn tất cả các mặt của một cái bục để đặt tượng có dạng hình chóp cụt lục giác đều có cạnh đáy lớn 1 m, cạnh bên và cạnh đáy nhỏ bằng 0,7 m. Tính tổng diện tích cần sơn...
Bài 1 trang 73 Toán 11 Tập 2: Cho hình chóp S.ABC có đáy là tam giác vuông tại C, mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với (ABC)...
Bài 2 trang 73 Toán 11 Tập 2: Cho tam giác đều ABC cạnh a, I trung điểm của BC, D là điểm đối xứng với A qua I. Vẽ đoạn thẳng SD có độ dài và vuông góc với (ABC). Chứng minh rằng:...
Bài 3 trang 73 Toán 11 Tập 2: Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy ABCD là hình thang vuông tại A và B, AA′ = 2a, AD = 2a, AB = BC = a...
Bài 4 trang 74 Toán 11 Tập 2: Cho hình hộp ABCD.A′B′C′D′ có đáy là hình thoi. Cho biết AB = BD = a, A′C = 2a...
Bài 5 trang 74 Toán 11 Tập 2: Cho hình chóp cụt tứ giác đều có cạnh đáy lớn bằng 2a, cạnh đáy nhỏ và đường nối tâm hai đáy bằng a. Tính độ dài cạnh bên và đường cao của mỗi mặt bên...
Bài 6 trang 74 Toán 11 Tập 2: Kim tự tháp bằng kính tại bảo tàng Louvre ở Paris có dạng hình chóp tứ giác đều với chiều cao là 21,6 m và cạnh đáy dài 34 m. Tính độ dài cạnh bên và diện tích xung quanh của kim tự tháp...
Xem thêm các bài giải SGK Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: