Bài 5 trang 74 Toán 11 Tập 2 Chân trời sáng tạo | Giải bài tập Toán lớp 11

369

Với giải Bài 5 trang 74 Toán 11 Tập 2 Chân trời sáng tạo chi tiết trong Bài 3: Hai mặt phẳng vuông góc giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 3: Hai mặt phẳng vuông góc

Bài 5 trang 74 Toán 11 Tập 2: Cho hình chóp cụt tứ giác đều có cạnh đáy lớn bằng 2a, cạnh đáy nhỏ và đường nối tâm hai đáy bằng a. Tính độ dài cạnh bên và đường cao của mỗi mặt bên.

Lời giải:

Bài 5 trang 74 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

Gọi OO' là đường nối tâm của hai đáy.

Kẻ B′H ⊥ BD (H BD), B′K ⊥ BC (K ∈ BC).

Ta có:

 BD=AB2+AD2=2a2BO=12BD=a2

 B'D'=A'B'2+A'D'2=a2B'O'=12B'D'=a22

Vì OO′B′H là hình chữ nhật nên OH=B'=a22;B'H=OO'=a.

Do đó BH=BO=OH=a22.

• ΔBB′H vuông tại H nên BB'=B'H2+BH2=a62 (theo định lí Pythagore).

• BCC′B′ là hình thang cân nên BK=BCB'C'2=a2.

• ΔBB′K vuông tại K nên KB'=B'B2+BK2=a52 (theo định lí Pythagore).

Đánh giá

0

0 đánh giá