Giải Toán 11 trang 67 Tập 2 Chân trời sáng tạo

295

Với lời giải Toán 11 trang 67 Tập 2 chi tiết trong Bài 3: Hai mặt phẳng vuông góc sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 3: Hai mặt phẳng vuông góc

Hoạt động khám phá 3 trang 67 Toán 11 Tập 2: Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến d, điểm M không thuộc (P) và (Q). Gọi H và K lần lượt là hình chiếu vuông góc của M lên (P) và (Q). Gọi là giao điểm của d và (MHK) (Hình 8).

a) Giả sử (P) ⊥ (Q), hãy cho biết tứ giác MHOK là hình gì? Tìm trong (P) đường thẳng vuông góc với (Q).

b) Giả sử (P) chứa đường thẳng a với a ⊥ (Q), hãy cho biết tứ giác MHOK là hình gì? Tính góc giữa (P) và (Q).

Hoạt động khám phá 3 trang 67 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

Lời giải:

a) Vì MH ⊥ (Q) nên MH ⊥ (OH)

MK ⊥ (Q) nên MK ⊥ OK

Mà (P) ⊥ (Q) nên HM ⊥ MK.

Tứ giác MHOK có MHO^=MKO^=HMK^=90°

Vậy tứ giác MHOK là hình chữ nhật.

Trong (P) có OH ⊥ (Q).

b) Ta có:

a Q                                MH PMHaMH // OK

Lại có MH ⊥ (P) nên OK ⊥ (P) ⇒ OK ⊥ OH

Tứ giác MHOK có MHO^=MKO^=HOK^=90°

Vậy tứ giác MHOK là hình chữ nhật.

((P), (Q)) = (MH, MK) = HMK^=90°

Thực hành 1 trang 67 Toán 11 Tập 2: Cho hình chóp S.ABCD có các cạnh bên bằng nhau và đáy là hình vuông. Chứng minh rằng:

a) (SAC) ⊥ (ABCD) .

b) (SAC) ⊥ (SBD).

Lời giải:

Thực hành 1 trang 67 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

a) Gọi O = AC BD

• ΔSAC cân tại S nên SO ⊥ AC (1)

• ΔSBD cân tại S ⇒ SO ⊥ BD (2)

Từ (1) và (2) suy ra SO ⊥ (ABCD)

Ta có:

SO ABCDSO SAC     SAC  ABCD 

b) Vì ABCD là hình vuông nên AC ⊥ BD.

Mà SO ⊥ AC nên AC ⊥ (SBD).

Ta lại có: AC SAC

Do đó (SAC) ⊥ (SBD).

Vận dụng 1 trang 67 Toán 11 Tập 2: Mô tả cách kiểm tra một bức tường vuông góc với mặt sàn bằng hai cái êke trong Hình 10.

Vận dụng 1 trang 67 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Đặt êke sao cho hai cạnh góc vuông của hai êke chạm nhau tạo thành một đường thẳng, hai cạnh còn lại của hai êke sát với mặt sàn.

Nếu đường thẳng đó nằm sát với bức tường thì bức tường vuông góc với mặt sàn.

3. Tính chất cơ bản về hai mặt phẳng vuông góc

Hoạt động khám phá 4 trang 67 Toán 11 Tập 2: Cho đường thẳng a vuông góc với mặt phẳng (Q). Mặt phẳng (P) chứa a và cắt (Q) theo giao tuyến c. Trong (Q) ta vẽ đường thẳng b vuông góc với c. Hỏi:

a) (P) có vuông góc với (Q) không?

b) Đường thẳng b vuông góc với (P) không?

Hoạt động khám phá 4 trang 67 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

Lời giải:

a) Ta có:

a  Qa(P)(P)(Q)

b) Ta có:

a  Qb(Q)abbca,c(P)b(P)

Đánh giá

0

0 đánh giá