Với lời giải Toán 11 trang 24 Tập 2 chi tiết trong Bài 21: Phương trình, bất phương trình mũ và lôgarit sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 Bài 21: Phương trình, bất phương trình mũ và lôgarit
Luyện tập 4 trang 24 Toán 11 Tập 2: Giải các bất phương trình sau:
a) ;
b) 2log(2x + 1) > 3.
Lời giải:
a)
Bất phương trình đã cho tương đương với
⇔ – log7(x + 1) > log7(2 – x)
⇔ log7(x + 1)– 1 > log7(2 – x)
⇔ (x + 1)– 1 > 2 – x (do 7 > 1).
(*)
Mà – 1 < x < 2 nên x + 1 > 0, do đó (*) ⇔ x2 – x – 1 > 0
Kết hợp với điều kiện ta được
Vậy tập nghiệm của bất phương trình đã cho là .
b) 2log(2x + 1) > 3
Điều kiện: 2x + 1 > 0 ⇔ x > .
Bất phương trình đã cho tương đương với
.
Kết hợp với điều kiện, vậy tập nghiệm của bất phương trình đã cho là .
.
(Theo britannica.com)
a) Tính áp suất khí quyển ở độ cao 4 km.
b) Ở độ cao trên 10 km thì áp suất khí quyển sẽ như thế nào?
Lời giải:
a) Ở độ cao 4 km, tức h = 4, thay vào công thức đã cho ta được
.
Vậy áp suất khí quyển ở độ cao 4 km khoảng 56,47 kPa.
b) Ở độ cao trên 10 km, tức h > 10, khi đó ta có
.
Vậy ở độ cao trên 10 km thì áp suất khí quyển nhỏ hơn 23,97 kPa.
Bài tập
Bài 6.20 trang 24 Toán 11 Tập 2: Giải các phương trình sau:
a) 3x – 1 = 27;
b) ;
c) ;
d) 5x = 32x – 1.
Lời giải:
a) 3x – 1 = 27
⇔ 3x – 1 = 33
⇔ x – 1 = 3
⇔ x = 4
Vậy phương trình đã cho có nghiệm duy nhất là x = 4.
b)
⇔ 4x2 – 6 = – 2x2 + 18
⇔ 6x2 = 24
⇔ x2 = 4
⇔ x = ± 2.
Vậy tập nghiệm của phương trình đã cho là S = {– 2; 2}.
c)
.
Vậy phương trình đã cho có nghiệm duy nhất là .
d) 5x = 32x – 1
Lấy lôgarit cơ số 3 hai vế của phương trình ta được
log35x = log332x – 1
⇔ x log35 = 2x – 1
⇔ (2 – log35)x = 1
⇔ x = .
Vậy phương trình đã cho có nghiệm duy nhất là x = .
Bài 6.21 trang 24 Toán 11 Tập 2: Giải các phương trình sau:
a) log(x + 1) = 2;
b) 2log4x + log2(x – 3) = 2;
c) lnx + ln(x – 1) = ln4x;
d) log3(x2 – 3x + 2) = log3(2x – 4).
Lời giải:
a) log(x + 1) = 2
Điều kiện: x + 1 > 0 ⇔ x > – 1.
Phương trình đã cho tương đương với x + 1 = 102 ⇔ x = 100 – 1 ⇔ x = 99 (t/m).
Vậy phương trình đã cho có nghiệm duy nhất x = 99.
b) 2log4x + log2(x – 3) = 2
Ta có 2log4x + log2(x – 3) = 2
⇔ log2x + log2(x – 3) = 2
⇔ log2x(x – 3) = 2
⇔ x(x – 3) = 22
⇔ x2 – 3x – 4 = 0
⇔ x = – 1 hoặc x = 4.
Kết hợp với điều kiện, vậy phương trình đã cho có nghiệm duy nhất x = 4.
c) lnx + ln(x – 1) = ln4x
Ta có: lnx + ln(x – 1) = ln4x
⇔ lnx(x – 1) = ln4x
⇔ x(x – 1) = 4x
⇔ x2 – 5x = 0
⇔ x(x – 5) = 0
⇔ x = 0 hoặc x = 5.
Kết hợp với điều kiện, vậy phương trình đã cho có nghiệm duy nhất x = 5.
d) log3(x2 – 3x + 2) = log3(2x – 4)
Phương trình đã cho tương đương với
x2 – 3x + 2 = 2x – 4
⇔ x2 – 5x + 6 = 0
⇔ x = 2 hoặc x = 3.
Kết hợp với điều kiện, vậy phương trình đã cho có nghiệm duy nhất x = 3.
Bài 6.22 trang 24 Toán 11 Tập 2: Giải các bất phương trình sau:
a) 0,12 – x > 0,14 + 2x;
b) 2 . 52x + 1 ≤ 3;
c) log3(x + 7) ≥ – 1;
d) log0,5(x + 7) ≥ log0,5(2x – 1).
Lời giải:
a) 0,12 – x > 0,14 + 2x
⇔ 2 – x < 4 + 2x (do 0 < 0,1 < 1)
⇔ 3x > – 2
⇔ x > .
Vậy tập nghiệm của bất phương trình đã cho là .
b) 2 . 52x + 1 ≤ 3
.
Vậy tập nghiệm của bất phương trình đã cho là .
c) log3(x + 7) ≥ – 1
Điều kiện: x + 7 > 0 ⇔ x > – 7.
Ta có: log3(x + 7) ≥ – 1
⇔ x + 7 ≥ 3– 1
⇔ x ≥
.
Kết hợp với điều kiện, vậy tập nghiệm của bất phương trình đã cho là .
d) log0,5(x + 7) ≥ log0,5(2x – 1)
Ta có: log0,5(x + 7) ≥ log0,5(2x – 1)
⇔ x + 7 ≤ 2x – 1 (do 0 < 0,5 < 1)
⇔ x ≥ 8.
Kết hợp với điều kiện, vậy tập nghiệm của bất phương trình đã cho là S = [8; + ∞).
A = 500 ∙ (1 + 0,075)n (triệu đồng).
Tính thời gian tối thiểu gửi tiết kiệm để bác Minh thu được ít nhất 800 triệu đồng (cả vốn lẫn lãi).
Lời giải:
Số tiền bác Minh nhận được sau n năm gửi tiết kiệm là
A = 500 ∙ (1 + 0,075)n = 500 ∙ 1,075n (triệu đồng).
Để có được 800 triệu đồng thì A = 800
⇔ 500 ∙ 1,075n = 800 ⇔ 1,075n = 1,6 ⇔ n = log1,0751,6 ≈ 6,5.
Vậy sau khoảng 7 năm gửi tiết kiệm thì bác An thu được ít nhất 800 triệu đồng (cả vốn lẫn lãi).
N(t) = 500e0,4t.
Hỏi sau bao nhiêu giờ nuôi cấy, số lượng vi khuẩn vượt mức 80 000 con?
Lời giải:
Số lượng vi khuẩn vượt mức 80 000 con khi N(t) > 80 000
⇔ 500e0,4t > 80 000 ⇔ e0,4t > 160 ⇔ 0,4t > ln160 ⇔ t > ≈ 12,69.
Vậy sau khoảng 12,69 giờ nuôi cấy, số lượng vi khuẩn vượt mức 80 000 con.
a) Tìm nhiệt độ ban đầu của vật.
b) Sau bao lâu nhiệt độ của vật còn lại 30 ℃.
Lời giải:
a) Nhiệt độ ban đầu T0 của vật ứng với nhiệt độ tại thời điểm t = 0, từ đó ta được
T0 = 25 + 70e– 0,5 ∙ 0 = 95 (℃).
Vậy nhiệt độ ban đầu của vật là 95 ℃.
b) Nhiệt độ của vật còn lại 30 ℃, tức T = 30, khi đó t thỏa mãn phương trình
25 + 70e– 0,5t = 30 .
Vậy sau khoảng 5,28 phút nhiệt độ của vật còn lại 30 ℃.
Lời giải:
Ta có: pH = – log[H+] = 8. Suy ra [H+] = 10– 8 (mol/lít).
Vậy nồng độ ion hydrogen của dung dịch có độ pH là 8 là 10– 8 mol/lít.
Xem thêm các lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
HĐ1 trang 20 Toán 11 Tập 2: Nhận biết nghiệm phương trình mũ...
Luyện tập 1 trang 21 Toán 11 Tập 2: Giải các phương trình sau:..
HĐ2 trang 21 Toán 11 Tập 2: Nhận biết nghiệm của phương trình lôgarit....
Luyện tập 2 trang 21 Toán 11 Tập 2: Giải các phương trình sau:...
HĐ3 trang 22 Toán 11 Tập 2: Nhận biết nghiệm của bất phương trình mũ....
Luyện tập 3 trang 23 Toán 11 Tập 2: Giải các bất phương trình sau:...
HĐ4 trang 23 Toán 11 Tập 2: Nhận biết nghiệm của bất phương trình lôgarit....
Luyện tập 4 trang 24 Toán 11 Tập 2: Giải các bất phương trình sau:...
Bài 6.20 trang 24 Toán 11 Tập 2: Giải các phương trình sau:...
Bài 6.21 trang 24 Toán 11 Tập 2: Giải các phương trình sau:...
Bài 6.22 trang 24 Toán 11 Tập 2: Giải các bất phương trình sau:....
Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác: