Giải SBT Toán 11 trang 66 Tập 2 Cánh diều

171

Với lời giải SBT Toán 11 trang 66 Tập 2 chi tiết trong Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

Bài 8 trang 66 SBT Toán 11 Tập 2Cho hàm số f(x) = x3 có đồ thị (C).

a) Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng –1.

b) Viết phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 8.

Lời giải:

Hàm số f(x) = x3.

Xét ∆x là số gia của biến số tại điểm x.

Ta có: ∆y = f(x + ∆x) – f(x) = (x + ∆x)– x3

= x3 + 3x2.∆x + 3x(∆x)2 + (∆x)3 – x3

= 3x2.∆x + 3x(∆x)2 + (∆x)3

= ∆x[3x2 + 3x.∆x + (∆x)2]

Suy ra ΔyΔx=Δx3x2+3xΔx+Δx2Δx=3x2+3xΔx+Δx2.

Ta thấy limΔx0ΔyΔx=limΔx03x2+3xΔx+Δx2=3x2+3x0+02=3x2.

Vậy f'(x) = 3x2.

a) Ta có f'(1) = 3.(1)2 = 3 và f(1) = (1)3 = 1.

Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng –1 :

y = f’(–1)(x – (–1)) + f(–1)

Hay y = 3(x + 1) – 1, tức là y = 3x + 2.

b) Gọi hoành độ của tiếp điểm có tung độ bằng 8 là x0.

Do tiếp điểm thuộc (C), nên ta có:

f(x0) = (x0)3 = 8. Suy ra x0 = 2.

Ta có: f'(2) = 3.22 = 12.

Vậy phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 8 là:

y = f’(2)(x – 2) + 8, hay y = 12(x – 2) + 8, tức là y = 12x  16.

Bài 9 trang 66 SBT Toán 11 Tập 2Một vật rơi tự do có phương trình chuyển động là st=12gt2, trong đó g = 9,8 m/s2

a) Tìm vận tốc tức thời của vật tại thời điểm t = 3 (s).

b) Tìm thời điểm mà vận tốc tức thời của vật tại thời điểm đó bằng 39,2 (m/s).

Lời giải:

Xét ∆t là số gia của biến số tại điểm t.

Ta có:

Δs=st+Δtst=129,8t+Δt2129,8t2

=4,9t2+9,8tΔt+4,9Δt24,9t2=Δt9,8t+4,9Δt.

Suy ra: ΔsΔt=Δt9,8t+4,9ΔtΔt=9,8t+4,9Δt.

Ta thấy: limΔt0ΔsΔt=limΔt09,8t+4,9Δt=9,8t.

Vậy v(t) = s’(t) = 9,8t (m/s).

a) Vận tốc tức thời của vật tại thời điểm t = 3 (s) là:

v(3) = 9,8.3 = 29,4 (m/s).

b) Theo đề bài, ta có: v(t) = 9,8t = 39,2, suy ra t = 4.

Vậy vận tốc tức thời của vật đạt 39,2 m/s tại thời điểm t = 4 (s).

Đánh giá

0

0 đánh giá