Tính đạo hàm của mỗi hàm số sau bằng định nghĩa: a) f(x) = x + 2

477

Với giải Bài 6 trang 65 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

Bài 6 trang 65 SBT Toán 11 Tập 2Tính đạo hàm của mỗi hàm số sau bằng định nghĩa:

a) f(x) = x + 2;

b) g(x) = 4x2 – 1;

c) hx=1x1.

Lời giải:

a) Hàm số y = f(x) = x + 2.

Xét ∆x là số gia của biến số tại điểm x.

Ta có: ∆y = f(x + ∆x) – f(x) = (x + ∆x + 2) – (x + 2) = ∆x.

Suy ra ΔyΔx=ΔxΔx=1

Ta thấy limΔx0ΔyΔx=limΔx01=1

Vậy f'(x) = 1.

b) Hàm số y = g(x) = 4x2 – 1.

Xét ∆x là số gia của biến số tại điểm x.

Ta có: ∆y = g(x + ∆x) – g(x) = 4(x + ∆x)2 – 1 – (4x2 – 1)

= 4x2 + 8x. ∆x + (∆x)2 – 1 – 4x2 + 1

= 8x.∆x + (∆x)2.

Suy ra ΔyΔx=8xΔx+Δx2Δx=8x+Δx.

Ta thấy limΔx0ΔyΔx=limΔx08x+Δx=8x.

Vậy g'(x) = 8x.

c) Hàm số y=hx=1x1.

Xét ∆x là số gia của biến số tại điểm x.

Ta có: Δy=hx+Δxhx=1x+Δx11x1

=x1x+Δx1x+Δx1x1=Δxx+Δx1x1

Suy ra ΔyΔx=Δxx+Δx1x1Δx=1x+Δx1x1.

Ta thấy limΔx0ΔyΔx=limΔx01x+Δx1x1=1x12.

Vậy h'x=1x12.

Đánh giá

0

0 đánh giá