Tailieumoi.vn xin giới thiệu Trắc nghiệm Toán lớp 8 Bài 6: Hình thoi sách Cánh diều. Bài viết gồm 25 câu hỏi trắc nghiệm với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài trắc nghiệm Toán 8.
Trắc nghiệm Toán 8 Bài 6: Hình thoi
Câu 1 : Chọn câu trả lời sai.
Đáp án : D
Vì theo dấu hiệu nhận biết hình thoi
Hình bình hành có hai cạnh kề bằng nhau là hình thoi.
Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.
Hình chữ nhật là tứ giác có bốn góc bằng nhau nhưng bốn cạnh không bằng nhau nên không là hình thoi.
Câu 2 : Hình thoi có chu vi là 32 cm, cạnh hình thoi có độ dài là
Đáp án : B
Chu vi hình thoi bằng cạnh nhân 4.
Vậy cạnh hình thoi là 32 : 4 = 8 cm.
Câu 3 : Tứ giác dưới đây là hình thoi theo dấu hiệu nào?
Đáp án : A
Tứ giác có bốn cạnh bằng nhau là hình thoi (đúng theo định nghĩa hình thoi)
Câu 4 : Hình thoi có độ dài hai đường chéo là 24cm và 10cm thì cạnh của hình thoi đó bằng
Đáp án : B
Giả sử ABCD là hình thoi có hai đường chéo cắt nhau tại H và AC = 10cm, BD = 24cm.
Do ABCD là hình thoi nên
Xét tam giác AH vuông tại H ta có:
Suy ra AB= 13 cm.
Câu 5 : Hình thoi có độ dài hai đường chéo là 16 cm và 12cm thì chu vi của hình thoi đó bằng
Đáp án : D
Giả sử ABCD là hình thoi có hai đường chéo cắt nhau tại H và AC = 12 cm, BD = 16 cm.
Do ABCD là hình thoi nên
Xét tam giác AH vuông tại H ta có:
Suy ra AB= 10 cm.
Chu vi của hình thoi là: 4. 10 = 40 (cm)
Câu 6 : Hãy chọn câu sai.
Đáp án : B
Câu A, C, D đúng theo dấu hiệu nhận biết hình thoi.
Câu B sai vì 2 đường chéo không cắt nhau tại trung điểm mỗi đường.
Câu 7 : Điền từ thích hợp vào chỗ trống: “Tứ giác có hai đường chéo … là hình thoi”.
Đáp án : B
Vì tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành.
Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.
Câu 8 : Hình thoi không có tính chất nào dưới đây?
Đáp án : D
Hình thoi có tất cả các tính chất của hình bình hành
+ Các cạnh đối song song và bằng nhau, các góc đối bằng nhau.
+ Hai đường chéo cắt nhau tại trung điểm mỗi đường.
Ngoài ra còn có
+ Hai đường chéo vuông góc với nhau.
+ Hai đường chéo là các đường phân giác của các góc của hình thoi.
Câu 9 : Trong các hình sau, hình nào vừa có tâm đối xứng, vừa có trục đối xứng?
Đáp án : D
Hình thoi có tâm đối xứng là giao điểm hai đường chéo, hai trục đối xứng là hai đường chéo của hình thoi.
Câu 10 : Cho các hình sau, chọn khẳng định đúng
Đáp án : C
Hình 1 là hình thoi vì có hai đường chéo cắt nhau tại trung điểm mỗi đường và vuông góc với nhau.
Hình 2 không là hình thoi vì bốn cạnh không bằng nhau.
Hình 3 không là hình thoi vì bốn cạnh không bằng nhau.
Câu 11 : Cho hình thoi ABCD có chu vi bằng 16 cm, đường cao bằng 2 cm. Tính các góc của hình thoi. Hãy chọn câu trả lời đúng.
Đáp án : A
Vì hình thoi ABCD có chu vi bằng 16 cm nên cạnh hình thoi có độ dài là 16 : 4 = 4 cm.
Suy ra AD = 4 cm. Xét tam giác AHD vuông tại H có AH = 2cm, AD = 4cm nên
(theo tính chất).
Suy ra (Vì ABCD là hình thoi )
Nên hình thoi ABCD có:
(Vì hai góc đối bằng nhau).
Câu 12 : Tứ giác ABCD có AB = CD. Gọi M, N theo thứ tự là trung điểm của BC, DA. Gọi I, K theo thứ tự là trung điểm của AC và BD và. Tứ giác KMIN là hình gì?
Đáp án : D
Xét các tam giác BCD, CAB, ADC, DBA ta có:
Mà AB = CD (giả thiết) .
Suy ra MK = KN = NI = IM.
Tứ giác KMIN có bốn cạnh bằng nhau nên là hình thoi.
Câu 13 : Các phương án sau, phương án nào sai?
Đáp án : D
Định lí:
+ Hình thoi có hai trục đối xứng là hai đường chéo của hình thoi.
+ Có một tâm đối xứng là giao điểm của hai đường chéo.
Mở rộng:
+ Trong hình chữ nhật, các trung điểm của các cạnh hình chữ nhật là các đỉnh của một hình thoi.
+ Trong hình thoi, các trung điểm của bốn cạnh hình thoi là các hình chữ nhật.
→ Đáp án D sai.
Câu 14 : Hai đường chéo của hình thoi có độ dài lần lượt là 8cm và 10cm. Diện tích của hình thoi đó là ?
Đáp án : B
Câu 15 : Một hình thoi có diện tích là . Biết độ dài một đường chéo bằng . Tính độ dài đường chéo còn lại.
Đáp án : A
Độ dài đường chéo còn lại là:
Câu 16 : Cho hình thoi ABCD có O là giao điểm hai đường chéo, biết AC = 16cm và OB = 6cm. Tính CD?
Đáp án : D
Do ABCD là hình thoi nên:
Áp dụng định lí Pytago vào tam giác vuông ABO ta có:
Vì ABCD là hình thoi nên AB = CD = 10cm
Câu 17 : Cho tam giác ABC vuông ở A, trung tuyến AM. Gọi D là trung điểm của AB và MD // AC, là điểm đối xứng với M qua D. Tứ giác là hình gì?
Đáp án : A
Vì đối xứng M qua D nên (1)
Ta có: MD // AC
Mặt khác vuông ở A nên .(2)
Từ (1) và (2) suy ra
Vì D là trung điểm của AB (gt) và D là trung điểm của M nên tứ giác là hình bình hành. Mặt khác nên là hình thoi. (Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.)
Câu 18 : Cho hình thang cân MNPQ. Gọi A, B, C, D lần lượt là các điểm thuộc các cạnh MN, NP, PQ, QM và ; . Tứ giác ABCD là hình gì?
Đáp án : D
Do MNPQ là hình thang cân nên MP = NQ. (hình thang cân có hai đường chéo bằng nhau). (1)
Xét các tam giác MNQ ; PQN, MNP, QMP ta có:
;
Suy ra AB = BC = CD = DA.
Do đó ABCD là hình thoi. (Tứ giác có bốn cạnh bằng nhau là hình thoi.)
Câu 19 : Cho hình thoi ABCD có chu vi bằng 24cm, đường cao bằng 3cm. Tính .
Đáp án : D
Vì hình thoi ABCD có chu vi bằng 24cm nên cạnh hình thoi có độ dài là 24 : 4 = 6cm.
Suy ra AD = 6cm. Xét tam giác AHD vuông tại H có.
( theo tính chất).
Suy ra .(Vì ABCD là hình thoi )
Nên hình thoi ABCD có:
; (Vì hai góc đối bằng nhau).
Lại có tia CA là tia phân giác (tính chất hình thoi).
Nên
Hai đường chéo là các đường phân giác của các góc của hình thoi
Câu 20 : Cho hình thang ABCD. Gọi M, N, P, Q lần lượt là các điểm thuộc các cạnh AB, BC, CD, DA và ; ; . Hình thang ABCD có thêm điều kiện gì thì MNPQ là hình thoi. Hãy chọn câu trả lời đúng
Đáp án : D
Xét tam giác ABC có : (1)
Xét tam giác ADC có: (2)
Từ (1) và (2) suy ra là hình bình hành.
Để hình bình hành MNPQ là hình thoi ta cần có MN = MQ.
Mà
Suy ra AC = BD.
Vậy để hình bình hành MNPQ là hình thoi thì AC = BD.
Câu 21 : Tứ giác ABCD có AB = CD. Gọi M, N theo thứ tự là trung điểm của BC, DA. Gọi I, K theo thứ tự là trung điểm của AC và BD và
Hãy chọn câu trả lời sai
Đáp án : C
Đặt BD = CE =2a.
Xét bốn tam giác BDE, ECD, DCB, BEC ta được:
Suy ra MP = NQ = NP = MQ.
Tứ giác PMQN có bốn cạnh bằng nhau nên là hình thoi.
Áp dụng tính chất về đường chéo vào hình thoi PMQN ta được , PQ là phân giác của .
Câu 22 : Cho hình thoi ABCD có tù. Biết đường cao kẻ từ đỉnh A đến cạnh CD chia cạnh đó thành hai đoạn bằng nhau. Tính các góc của hình thoi.
Đáp án : D
Gọi H là chân đường cao kẻ từ A đến cạnh CD. Từ giả thiết ta có: , CH = HD suy ra AH là đường trung trực của đoạn CD nên AC = AD (1)
Do ABCD là hình thoi nên AD = CD (2)
Từ (1) và (2) suy ra AD = CD = AC nên là tam giác đều, do đó.
Vì AB // CD nên (hai góc trong cùng phía)
.
Áp dụng tính chất về góc vào hình thoi ABCD ta được:
Câu 23 : Cho hình bình hành ABCD có I là giao điểm hai đường chéo. Biết rằng AC = 6cm và BD = 8cm và AD = 5cm. Tìm khẳng định sai ?
Đáp án : D
Theo tính chất hình bình hành ta có: I là trung điểm của AC và BD.
Suy ra:
Xét tam giác AID có:
Suy ra: tam giác AID là tam giác vuông: AI ⊥ DI hay AC ⊥ BD
Hình bình hành ABCD có 2 đường chéo AC và BD vuông góc với nhau nên là hình thoi.
Suy ra: AB = BC = CD = DA = 5cm
Hai đường chéo của hình thoi cắt nhau tại trung điểm của mỗi đường.
Câu 24 : Cho hình thoi ABCD. Trên các cạnh BC và CD lần lượt lấy hai điểm E và F sao cho BE = DF. Gọi G, H thứ tự là giao điểm của AE, AF với đường chéo DB. Tứ giác AGCH là hình gì?
Đáp án : A
Gọi O là giao điểm của AC và BD thì (do O là giao điểm của hai đường chéo của hình thoi)
Áp dụng định nghĩa, tính chất về góc và giả thiết vào hình thoi ABCD, ta được:
Từ đó suy ra (c-g-c).
Suy ra ( hai góc tương ứng).
Mà AC là phân giác của (1)
Xét tam giác AGH có AO là đường cao, đồng thời là đường phân giác nên tam giác AGH cân tại A.
Suy ra HO = OG (2)
Do ABCD là hình thoi nên AO = OC (tính chất đường chéo của hình thoi) (3)
Từ (1), (2), (3) suy ra: AHCG là hình thoi.
Câu 25 : Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của AD, BC. Các đường BE, DF cắt AC tại P, Q . Tứ giác EPFQ là hình thoi nếu bằng
Đáp án : B
Gọi O là giao điểm của hai đường chéo AC và BD.
Vì ABCD là hình bình hành nên O là trung điểm của AC, BD và AD //CB, AD = BC
Xét tứ giác EDFB có ED // FB, .
Nên EDFB là hình bình hành.
Suy ra: BE = DF, BE // DF.
Xét có P là giao điểm hai đường trung tuyến BE, AO nên P là trọng tâm
.
Xét có Q là giao điểm hai đường trung tuyến DF, CO nên Q là trọng tâm
.
Mà BE = DF (cmt) EP = QF.
Xét tứ giác EPFQ có EP = QF, EP // QF EPFQ là hình bình hành.
Để hình bình hành EPFQ là hình thoi thì .
Mà EF // CD (do hình bình hành ABCD có AB //CD, E là trung điểm AD, F là trung điểm BC ).
Nên hay .
Xem thêm các bài giải Trắc nghiệm Toán lớp 8 Cánh diều hay, chi tiết khác: